Given the root of a binary tree, return the preorder traversal of its nodes’ values.
Example 1:
Input: root = [1,null,2,3] Output: [1,2,3]
Example 2:
Input: root = [] Output: []
Example 3:
Input: root = [1] Output: [1]
Example 4:
Input: root = [1,2] Output: [1,2]
Example 5:
Input: root = [1,null,2] Output: [1,2]
Constraints:
- The number of nodes in the tree is in the range [0, 100].
- -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Runtime: 68 ms, faster than 95.82% of JavaScript online submissions for Binary Tree Preorder Traversal.
Memory Usage: 38.9 MB, less than 14.52% of JavaScript online submissions for Binary Tree Preorder Traversal.
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var preorderTraversal = function(root) {
const result = [];
const stack = [root];
while(stack.length > 0) {
node = stack.pop();
if (node) {
result.push(node.val);
stack.push(node.right);
stack.push(node.left);
}
}
return result;
};
Runtime: 68 ms, faster than 95.82% of JavaScript online submissions for Binary Tree Preorder Traversal.
Memory Usage: 38.9 MB, less than 27.35% of JavaScript online submissions for Binary Tree Preorder Traversal.
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var preorderTraversal = function(root) {
const result = [];
const stack = [];
let node = root;
while(node || stack.length > 0) {
if (node) {
result.push(node.val);
stack.push(node.right);
node = node.left;
} else {
node = stack.pop();
}
}
return result;
};