Redis 的数据全部在内存里,如果突然宕机,数据就会全部丢失,因此必须有一种机制 来保证 Redis 的数据不会因为故障而丢失,这种机制就是 Redis 的持久化机制。
Redis 的持久化机制有两种,第一种是RDB快照,第二种是 AOF 日志快照是一次全量备 份,AOF 日志是连续的增量备份。快照是内存数据的二进制序列化形式,在存储上非常紧凑,而 AOF 日志记录的是内存数据修改的指令记录文本。AOF 日志在长期的运行过程中会 变的无比庞大,数据库重启时需要加载 AOF 日志进行指令重放,这个时间就会无比漫长。所以需要定期进行 AOF 重写,给 AOF 日志进行瘦身。

image.png

快照原理

在服务线上请求的同时,Redis 还需要进行内存快照,内存快照要求 Redis 必须进行文 件 IO 操作,可文件 IO 操作是不能使用多路复用 API

这意味着单线程同时在服务线上的请求还要进行文件 IO 操作,文件 IO 操作会严重拖 垮服务器请求的性能。还有个重要的问题是为了不阻塞线上的业务,就需要边持久化边响应 客户端请求。

Redis 使用操作系统的多进程 COW(Copy On Write) 机制来实现快照持久化。

快照持久化是 Redis 默认采用的持久化方式,在 Redis.conf 配置文件中默认有此下配置:

  1. #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
  2. save 900 1
  3. #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
  4. save 300 10
  5. #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
  6. save 60 10000

fork( 多进程)

Redis 在持久化时会调用 glibc 的函数 fork 产生一个子进程,快照持久化完全交给子进 程来处理,父进程继续处理客户端请求。子进程刚刚产生时,它和父进程共享内存里面的代 码段和数据段。这时你可以将父子进程想像成一个连体婴儿,共享身体。这是 Linux 操作系统的机制,为了节约内存资源,所以尽可能让它们共享起来。在进程分离的一瞬间,内存的 增长几乎没有明显变化。

子进程做数据持久化,它不会修改现有的内存数据结构,它只是对数据结构进行遍历读 取,然后序列化写到磁盘中。但是父进程不一样,它必须持续服务客户端请求,然后对内存 数据结构进行不间断的修改。

这个时候就会使用操作系统的 COW 机制来进行数据段页面的分离。数据段是由很多操 作系统的页面组合而成,当父进程对其中一个页面的数据进行修改时,会将被共享的页面复 制一份分离出来,然后对这个复制的页面进行修改。这时子进程相应的页面是没有变化的,还是进程产生时那一瞬间的数据。

子进程因为数据没有变化,它能看到的内存里的数据在进程产生的一瞬间就凝固了,再 也不会改变,这也是为什么 Redis 的持久化叫「快照」的原因。接下来子进程就可以非常安
心的遍历数据了进行序列化写磁盘了。

AOF 原理

AOF 日志存储的是 Redis 服务器的顺序指令序列,AOF 日志只记录对内存进行修改的 指令记录

Redis 会在收到客户端修改指令后,先进行参数校验,如果没问题,就立即将该指令文 本存储到 AOF 日志中,也就是先存到磁盘,然后再执行指令。这样即使遇到突发宕机,已经存储到 AOF 日志的指令进行重放一下就可以恢复到宕机前的状态。

Redis 在长期运行的过程中,AOF 的日志会越变越长。如果实例宕机重启,重放整个 AOF 日志会非常耗时,导致长时间 Redis 无法对外提供服务。所以需要对 AOF 日志瘦 身。

AOF 重写
Redis 提供了 bgrewriteaof 指令用于对 AOF 日志进行瘦身。其原理就是开辟一个子进 程对内存进行遍历转换成一系列 Redis 的操作指令,序列化到一个新的 AOF 日志文件中。 序列化完毕后再将操作期间发生的增量 AOF 日志追加到这个新的 AOF 日志文件中,追加 完毕后就立即替代旧的 AOF 日志文件了,瘦身工作就完成了。

fsync

AOF 日志是以文件的形式存在的,当程序对 AOF 日志文件进行写操作时,实际上是将 内容写到了内核为文件描述符分配的一个内存缓存中,然后内核会异步将脏数据刷回到磁盘 的。

这就意味着如果机器突然宕机,AOF 日志内容可能还没有来得及完全刷到磁盘中,这个 时候就会出现日志丢失。那该怎么办?

Redis 进程实时调用 fsync 函数就可以保证 aof 日志不丢失。但是 fsync 是一个 磁盘 IO 操作,它很慢!如果 Redis 执行一条指令就要 fsync 一次,那么 Redis 高性能的 地位就不保了。
所以在生产环境的服务器中,Redis 通常是每隔 1s 左右执行一次 fsync 操作,周期 1s 是可以配置的。这是在数据安全性和性能之间做了一个折中,在保持高性能的同时,尽可能 使得数据少丢失。

在 Redis 的配置文件中存在三种不同的 AOF 持久化方式,它们分别是:

appendfsync always    #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec  #每秒钟同步一次,显示地将多个写命令同步到硬盘
appendfsync no        #让操作系统决定何时进行同步

两种持久化方式总结

1、遍历整个内存,大块写磁盘会加重系统负载
2、AOF 的 fsync 是一个耗时的 IO 操作,它会降低 Redis 性能,同时也会增加系 统 IO 负担

所以通常 Redis 的主节点是不会进行持久化操作,持久化操作主要在从节点进行。从节 点是备份节点,没有来自客户端请求的压力,它的操作系统资源往往比较充沛。
但是如果出现网络分区,从节点长期连不上主节点,就会出现数据不一致的问题,特别 是在网络分区出现的情况下又不小心主节点宕机了,那么数据就会丢失,所以在生产环境要 做好实时监控工作,保证网络畅通或者能快速修复。另外还应该再增加一个从节点以降低网 络分区的概率,只要有一个从节点数据同步正常,数据也就不会轻易丢失。

混合持久化

重启 Redis 时,我们很少使用 rdb 来恢复内存状态,因为会丢失大量数据。我们通常 使用 AOF 日志重放,但是重放 AOF 日志性能相对 rdb 来说要慢很多,这样在 Redis 实 例很大的情况下,启动需要花费很长的时间
Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。将 rdb 文 件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。
image.png
于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可 以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升。

RDB 和 AOF 的混合持久化默认关闭,可以通过配置项 aof-use-rdb-preamble 开启。