底层数据结构

  • Arraylist: Object[]数组
  • Vector:Object[]数组
  • LinkedList: 双向链表(JDK1.6 之前为循环链表,JDK1.7 取消了循环)

    Arraylist

    ArrayList 线程不安全,底层是数组队列,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。在添加大量元素前,应用程序可以使用ensureCapacity操作来增加 ArrayList 实例的容量。这可以减少递增式再分配的数量。

    添加元素

    ArrayList add()方法流程.png
    参考着源码看会更清晰。

    扩容

    以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10(默认大小)
    ArrayList 每次扩容之后容量都会变为原来的 1.5 倍左右(oldCapacity 为偶数就是 1.5 倍,否则是 1.5 倍左右) 奇偶不同,比如 :10+10/2 = 15, 33+33/2=49。如果是奇数的话会丢掉小数.
    copyOf() 方法新建一个数组,原数组拷贝到你自己的数组里,并返回该数组.

    优缺点

  • 随机查询效率较高:从ArrayList中使用get()方法获取值的时候,是通过数组下标来获取值的,所以ArrayList的随机查询效率较高,时间复杂度是O(1)。

  • 插入删除指定位置元素效率不高:在删除等操作的时候,删除完之后需要将后面的值整体进行前移,所以整体的效率不高,时间复杂度是O(n)。

    Vector

    Vector 线程安全
    Vector跟ArrayList的底层结构是一样的,线程安全的原因是因为加了synchronized锁来保证同步执行。
    目前很少有使用Vector 如需需要使用线程安全得list可以考虑CopyOnWriteArrayList和synchronizedList

    LinkedList

    底层结构双向链表:每个节点包含两个指针,一个 prev 指向前一个节点,一个 next 指向后一个节点。
    image.png

优缺点

  • 随机查询效率不高:如果要从这个双向链表中随机获取值的话,需要从表头开始进行遍历,一直遍历到我们需要获取到的值为止。这个整个过程为O(n)。
  • 插入/删除指定位置元素效率高:在执行插入/删除等操作时,LinkedList只需要更改它的前继指针和后继指针就可以了。而不用想ArrayList一样将后面的数据进行移动,所以说整体效率是比较高的,时间复杂度为O(1)。

    CopyOnWriteArrayList

    线程安全

    原理

    CopyOnWriteArrayList是在执行修改操作时,copy一份新的数组进行相关的操作,在执行完修改操作后将原来集合指向新的集合来完成修改操作。

    CopyOnWriteArrayList 读取操作的实现

    读取操作没有任何同步控制和锁操作,理由就是内部数组 array 不会发生修改,只会被另外一个 array 替换,因此可以保证数据安全。

    CopyOnWriteArrayList 写入操作的实现

    CopyOnWriteArrayList 写入操作 add() 方法在添加集合的时候加了锁,保证了同步,避免了多线程写的时候会 copy 出多个副本出来。

    场景

    CopyOnWriteArrayList效率较高,适合读多写少的场景,因为在读的时候读的是旧集合,所以它的实时性不高。

    synchronizedList

    线程安全
    原理:synchronizedList线程安全的原因是因为它几乎在每个方法中都使用了synchronized同步锁
    场景:synchronizedList适合对数据要求较高的情况,但是因为读写全都加锁,所有效率较低。

ConcurrentLinkedQueue

线程安全、非阻塞队列
ConcurrentLinkedQueue这个队列使用链表作为其数据结构.ConcurrentLinkedQueue 应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。
ConcurrentLinkedQueue 内部代码我们就不分析了,大家知道 ConcurrentLinkedQueue 主要使用 CAS 非阻塞算法来实现线程安全就好了。
ConcurrentLinkedQueue 适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 ConcurrentLinkedQueue 来替代。

BlockingQueue

简介

上面我们己经提到了 ConcurrentLinkedQueue 作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——BlockingQueue。阻塞队列(BlockingQueue)被广泛使用在“生产者-消费者”问题中,其原因是 BlockingQueue 提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。

ArrayBlockingQueue

ArrayBlockingQueue 是 BlockingQueue 接口的有界队列实现类,底层采用数组来实现。ArrayBlockingQueue 一旦创建,容量不能改变。其并发控制采用可重入锁来控制,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。
ArrayBlockingQueue 默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 ArrayBlockingQueue。而非公平性则是指访问 ArrayBlockingQueue 的顺序不是遵守严格的时间顺序,有可能存在,当 ArrayBlockingQueue 可以被访问时,长时间阻塞的线程依然无法访问到 ArrayBlockingQueue。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 ArrayBlockingQueue,可采用如下代码:

  1. private static ArrayBlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<Integer>(10,true);

LinkedBlockingQueue

LinkedBlockingQueue 底层基于单向链表实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 ArrayBlockingQueue 相比起来具有更高的吞吐量,为了防止 LinkedBlockingQueue 容量迅速增,损耗大量内存。通常在创建 LinkedBlockingQueue 对象时,会指定其大小,如果未指定,容量等于 Integer.MAX_VALUE。

PriorityBlockingQueue

PriorityBlockingQueue 是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 compareTo() 方法来指定元素排序规则,或者初始化时通过构造器参数 Comparator 来指定排序规则。

PriorityBlockingQueue 并发控制采用的是 ReentrantLock,队列为无界队列(ArrayBlockingQueue 是有界队列,LinkedBlockingQueue 也可以通过在构造函数中传入 capacity 指定队列最大的容量,但是 PriorityBlockingQueue 只能指定初始的队列大小,后面插入元素的时候,如果空间不够的话会自动扩容)。

简单地说,它就是 PriorityQueue 的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 ClassCastException 异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。

ConcurrentSkipListMap

跳表的本质是同时维护了多个链表,并且链表是分层的,最低层的链表维护了跳表内所有的元素,每上面一层链表都是下面一层的子集。
List - 图3

对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低,跳表就不一样了。跳表是一种可以用来快速查找的数据结构,有点类似于平衡树。它们都可以对元素进行快速的查找。但一个重要的区别是:对平衡树的插入和删除往往很可能导致平衡树进行一次全局的调整。而对跳表的插入和删除只需要对整个数据结构的局部进行操作即可。这样带来的好处是:在高并发的情况下,你会需要一个全局锁来保证整个平衡树的线程安全。而对于跳表,你只需要部分锁即可。这样,在高并发环境下,你就可以拥有更好的性能。而就查询的性能而言,跳表的时间复杂度也是 O(logn) 所以在并发数据结构中,JDK 使用跳表来实现一个 Map。
跳表是一种利用空间换时间的算法。
使用跳表实现 Map 和使用哈希算法实现 Map 的另外一个不同之处是:哈希并不会保存元素的顺序,而跳表内所有的元素都是排序的。因此在对跳表进行遍历时,你会得到一个有序的结果。所以,如果你的应用需要有序性,那么跳表就是你不二的选择。JDK 中实现这一数据结构的类是 ConcurrentSkipListMap。

区别

Arraylist 和 Vector 的区别?

  • ArrayList 是 List 的主要实现类,底层使用 Object[ ]存储,适用于频繁的查找工作,线程不安全 ;
  • Vector 是 List 的古老实现类,底层使用Object[ ] 存储,线程安全的。

    Arraylist 与 LinkedList 区别?

  1. 是否保证线程安全: ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全;
  2. 底层数据结构: Arraylist 底层使用的是 Object 数组;LinkedList 底层使用的是 双向链表 数据结构(JDK1.6 之前为循环链表,JDK1.7 取消了循环。注意双向链表和双向循环链表的区别)
  3. 插入和删除是否受元素位置的影响:
    • ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行add(E e)方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是 O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element))时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。
    • LinkedList 采用链表存储,所以,如果是在头尾插入或者删除元素不受元素位置的影响(add(E e)、addFirst(E e)、addLast(E e)、removeFirst() 、 removeLast()),近似 O(1),如果是要在指定位置 i 插入和删除元素的话(add(int index, E element),remove(Object o)) 时间复杂度近似为 O(n) ,因为需要先移动到指定位置再插入。
  4. 是否支持快速随机访问: LinkedList 不支持高效的随机元素访问,而 ArrayList 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index)方法)。
  5. 内存空间占用: ArrayList 的空 间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。

参考