一、二叉树入门
之前我们实现的符号表中,不难看出,符号表的增删查操作,随着元素个数N的增多,其耗时也是线性增多的,时 间复杂度都是O(n),为了提高运算效率,接下来我们学习树这种数据结构。
1.1 树的基本定义
树是我们计算机中非常重要的一种数据结构,同时使用树这种数据结构,可以描述现实生活中的很多事物,例如家谱、单位的组织架构、等等。
树是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就 是说它是根朝上,而叶朝下的。
树具有以下特点:
- 每个结点有零个或多个子结点;
- 没有父结点的结点为根结点;
- 每一个非根结点只有一个父结点;
每个结点及其后代结点整体上可以看做是一棵树,称为当前结点的父结点的一个子树;
1.2 树的相关术语
结点的度:
一个结点含有的子树的个数称为该结点的度;
叶结点:
度为0的结点称为叶结点,也可以叫做终端结点
分支结点:
度不为0的结点称为分支结点,也可以叫做非终端结点
结点的层次:
从根结点开始,根结点的层次为1,根的直接后继层次为2,以此类推
结点的层序编号:
将树中的结点,按照从上层到下层,同层从左到右的次序排成一个线性序列,把他们编成连续的自然数。
树的度:
树中所有结点的度的最大值
树的高度(深度):
树中结点的最大层次
森林:
m(m>=0)个互不相交的树的集合,将一颗非空树的根结点删去,树就变成一个森林;给森林增加一个统一的根 结点,森林就变成一棵树
孩子结点:
一个结点的直接后继结点称为该结点的孩子结点
双亲结点(父结点):
一个结点的直接前驱称为该结点的双亲结点
兄弟结点:
同一双亲结点的孩子结点间互称兄弟结点1.3 二叉树的基本定义
二叉树就是度不超过2的树(每个结点最多有两个子结点)
满二叉树:
一个二叉树,如果每一个层的结点树都达到最大值,则这个二叉树就是满二叉树。
完全二叉树:
叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树
1.4 二叉查找树的创建
1.4.1二叉树的结点类
根据对图的观察,我们发现二叉树其实就是由一个一个的结点及其之间的关系组成的,按照面向对象的思想,我们设计一个结点类来描述结点这个事物。
结点类API设计:| **类名** | **Node<Key,Value>** |
| —- | —- | | 构造方法 | Node(Key key, Value value, Node left, Node right):创建Node对象 | | 成员变量 | 1.public Node left:记录左子结点
2.public Node right:记录右子结点
3.public Key key:存储键
4.public Value value:存储值 |<br /> <br />[06_树的入门.pdf](https://www.yuque.com/attachments/yuque/0/2021/pdf/384158/1610332615080-d038e017-2055-4d7e-b516-be72173aa8e4.pdf)<br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br />