Kubernetes 监控指标

对比

node-exporter用于采集服务器层面的运行指标,包括机器的loadavg、filesystem、meminfo等基础监控,类似于传统主机监控维度的zabbix-agent。
metric-server/heapster是从api-server中获取CPU、内存使用率这种监控指标,并把他们发送给存储后端,如InfluxDB或云厂商,他当前的核心作用是:为HPA等组件提供决策指标支持。
kube-state-metrics关注于获取Kubernetes各种资源的最新状态,如Deployment或者DaemonSet。
例如:

  • 调度了多少个Replicas?现在可用的有几个?
  • 多少个Pod是running/stopped/terminated状态?
  • Pod重启了多少次?
  • 有多少job在运行中?

这些指标都由kube-state-metrics提供。
之所以没有把kube-state-metrics纳入到metric-server的能力中,是因为他们的关注点本质上是不一样的。

  • metric-server仅仅是获取、格式化现有数据,写入特定的存储,实质上是一个监控系统。
  • kube-state-metrics是将Kubernetes的运行状况在内存中做了个快照,并且获取新的指标,但他没有能力导出这些指标。

    部署metric-server

    下载metric-server部署的yaml文件到本地。
    1. wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.3.7/components.yaml
    拉取metric-server的镜像到本地:
    1. # docker pull zhaoqinchang/metrics-server:0.3.7
    2. 0.3.7: Pulling from zhaoqinchang/metrics-server
    3. 9ff2acc3204b: Pull complete
    4. 9d14b55ff9a0: Pull complete
    5. Digest: sha256:c0efe772bb9e5c289db6cc4bc2002c268507d0226f2a3815f7213e00261c38e9
    6. Status: Downloaded newer image for zhaoqinchang/metrics-server:0.3.7
    7. docker.io/zhaoqinchang/metrics-server:0.3.7
    修改components.yaml文件为如下内容: ```yaml

    cat components.yaml


apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: system:aggregated-metrics-reader labels: rbac.authorization.k8s.io/aggregate-to-view: “true” rbac.authorization.k8s.io/aggregate-to-edit: “true” rbac.authorization.k8s.io/aggregate-to-admin: “true” rules:

  • apiGroups: [“metrics.k8s.io”] resources: [“pods”, “nodes”] verbs: [“get”, “list”, “watch”]

apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: metrics-server:system:auth-delegator roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:auth-delegator subjects:

  • kind: ServiceAccount name: metrics-server namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: metrics-server-auth-reader namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: extension-apiserver-authentication-reader subjects:

  • kind: ServiceAccount name: metrics-server namespace: kube-system

apiVersion: apiregistration.k8s.io/v1beta1 kind: APIService metadata: name: v1beta1.metrics.k8s.io spec: service: name: metrics-server namespace: kube-system group: metrics.k8s.io version: v1beta1 insecureSkipTLSVerify: true groupPriorityMinimum: 100

versionPriority: 100

apiVersion: v1 kind: ServiceAccount metadata: name: metrics-server

namespace: kube-system

apiVersion: apps/v1 kind: Deployment metadata: name: metrics-server namespace: kube-system labels: k8s-app: metrics-server spec: selector: matchLabels: k8s-app: metrics-server template: metadata: name: metrics-server labels: k8s-app: metrics-server spec: serviceAccountName: metrics-server volumes:

  1. # mount in tmp so we can safely use from-scratch images and/or read-only containers
  2. - name: tmp-dir
  3. emptyDir: {}
  4. containers:
  5. - name: metrics-server
  6. image: zhaoqinchang/metrics-server:0.3.7 #修改镜像为刚刚拉取下来的镜像
  7. imagePullPolicy: IfNotPresent
  8. args:
  9. - --cert-dir=/tmp
  10. - --secure-port=4443
  11. command: #添加以下三行command命令
  12. - /metrics-server
  13. - --kubelet-preferred-address-types=InternalIP
  14. - --kubelet-insecure-tls
  15. ports:
  16. - name: main-port
  17. containerPort: 4443
  18. protocol: TCP
  19. securityContext:
  20. readOnlyRootFilesystem: true
  21. runAsNonRoot: true
  22. runAsUser: 1000
  23. volumeMounts:
  24. - name: tmp-dir
  25. mountPath: /tmp
  26. nodeSelector:
  27. kubernetes.io/os: linux

apiVersion: v1 kind: Service metadata: name: metrics-server namespace: kube-system labels: kubernetes.io/name: “Metrics-server” kubernetes.io/cluster-service: “true” spec: selector: k8s-app: metrics-server ports:

  • port: 443 protocol: TCP targetPort: main-port

apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: system:metrics-server rules:

  • apiGroups:
    • “” resources:
    • pods
    • nodes
    • nodes/stats
    • namespaces
    • configmaps verbs:
    • get
    • list
    • watch

apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: system:metrics-server roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:metrics-server subjects:

  • kind: ServiceAccount name: metrics-server namespace: kube-system
    1. 部署metric-server
    2. ```bash
    3. # kubectl apply -f components.yaml
    4. clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
    5. clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
    6. rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
    7. apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
    8. serviceaccount/metrics-server created
    9. deployment.apps/metrics-server created
    10. service/metrics-server created
    11. clusterrole.rbac.authorization.k8s.io/system:metrics-server created
    12. clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
    查看metric.k8s.io是否出现在Kubernetes集群的API群组列表中:
    1. # kubectl api-versions | grep metrics
    2. metrics.k8s.io/v1beta1

    使用

    kubectl top命令可显示节点和Pod对象的资源使用信息,它依赖于集群中的资源指标API来收集各项指标数据。它包含有Node和Pod两个子命令,可分别显示Node对象和Pod对象的相关资源占用率。
    列出Node资源占用率命令的语法格式为“kubectl top node [-l label | NAME]”,例如下面显示所有节点的资源占用状况的结果中显示了各节点累计CPU资源占用时长及百分比,以及内容空间占用量及占用比例。必要时,也可以在命令直接给出要查看的特定节点的标识,以及使用标签选择器进行节点过滤。
    1. [root@master metric]# kubectl top nodes
    2. NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
    3. master 282m 14% 1902Mi 51%
    4. node-02 70m 3% 1371Mi 37%
    5. node-03 121m 1% 892Mi 11%
    而名称空间级别的Pod对象资源占用率的使用方法会略有不同,使用时,一般应该跟定名称空间及使用标签选择器过滤出目标Pod对象。例如,下面显示kube-system名称空间下的Pod资源使用状况:
    1. [root@master metric]# kubectl top pods -n kube-system
    2. NAME CPU(cores) MEMORY(bytes)
    3. etcd-master 32m 300Mi
    4. kube-apiserver-master 86m 342Mi
    5. kube-controller-manager-master 30m 48Mi
    6. kube-flannel-ds-l5ghn 5m 10Mi
    7. kube-flannel-ds-rqlm2 4m 12Mi
    8. kube-flannel-ds-v92r9 4m 14Mi
    9. kube-proxy-7vjcv 18m 15Mi
    10. kube-proxy-xrz8f 13m 21Mi
    11. kube-proxy-zpwn6 1m 14Mi
    12. kube-scheduler-master 7m 17Mi
    13. metrics-server-5549c7694f-7vb66 2m 14Mi
    kubectl top命令为用户提供简洁、快速获取Node对象及Pod对象系统资源占用状况的接口,是集群运行和维护的常用命令之一。