对比
node-exporter用于采集服务器层面的运行指标,包括机器的loadavg、filesystem、meminfo等基础监控,类似于传统主机监控维度的zabbix-agent。
metric-server/heapster是从api-server中获取CPU、内存使用率这种监控指标,并把他们发送给存储后端,如InfluxDB或云厂商,他当前的核心作用是:为HPA等组件提供决策指标支持。
kube-state-metrics关注于获取Kubernetes各种资源的最新状态,如Deployment或者DaemonSet。
例如:
- 调度了多少个Replicas?现在可用的有几个?
- 多少个Pod是running/stopped/terminated状态?
- Pod重启了多少次?
- 有多少job在运行中?
这些指标都由kube-state-metrics提供。
之所以没有把kube-state-metrics纳入到metric-server的能力中,是因为他们的关注点本质上是不一样的。
- metric-server仅仅是获取、格式化现有数据,写入特定的存储,实质上是一个监控系统。
- kube-state-metrics是将Kubernetes的运行状况在内存中做了个快照,并且获取新的指标,但他没有能力导出这些指标。
部署metric-server
下载metric-server部署的yaml文件到本地。
拉取metric-server的镜像到本地:wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.3.7/components.yaml
修改components.yaml文件为如下内容: ```yaml# docker pull zhaoqinchang/metrics-server:0.3.7
0.3.7: Pulling from zhaoqinchang/metrics-server
9ff2acc3204b: Pull complete
9d14b55ff9a0: Pull complete
Digest: sha256:c0efe772bb9e5c289db6cc4bc2002c268507d0226f2a3815f7213e00261c38e9
Status: Downloaded newer image for zhaoqinchang/metrics-server:0.3.7
docker.io/zhaoqinchang/metrics-server:0.3.7
cat components.yaml
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: system:aggregated-metrics-reader labels: rbac.authorization.k8s.io/aggregate-to-view: “true” rbac.authorization.k8s.io/aggregate-to-edit: “true” rbac.authorization.k8s.io/aggregate-to-admin: “true” rules:
- apiGroups: [“metrics.k8s.io”] resources: [“pods”, “nodes”] verbs: [“get”, “list”, “watch”]
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: metrics-server:system:auth-delegator roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:auth-delegator subjects:
- kind: ServiceAccount name: metrics-server namespace: kube-system
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: metrics-server-auth-reader namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: extension-apiserver-authentication-reader subjects:
- kind: ServiceAccount name: metrics-server namespace: kube-system
apiVersion: apiregistration.k8s.io/v1beta1 kind: APIService metadata: name: v1beta1.metrics.k8s.io spec: service: name: metrics-server namespace: kube-system group: metrics.k8s.io version: v1beta1 insecureSkipTLSVerify: true groupPriorityMinimum: 100
versionPriority: 100
apiVersion: v1 kind: ServiceAccount metadata: name: metrics-server
namespace: kube-system
apiVersion: apps/v1 kind: Deployment metadata: name: metrics-server namespace: kube-system labels: k8s-app: metrics-server spec: selector: matchLabels: k8s-app: metrics-server template: metadata: name: metrics-server labels: k8s-app: metrics-server spec: serviceAccountName: metrics-server volumes:
# mount in tmp so we can safely use from-scratch images and/or read-only containers
- name: tmp-dir
emptyDir: {}
containers:
- name: metrics-server
image: zhaoqinchang/metrics-server:0.3.7 #修改镜像为刚刚拉取下来的镜像
imagePullPolicy: IfNotPresent
args:
- --cert-dir=/tmp
- --secure-port=4443
command: #添加以下三行command命令
- /metrics-server
- --kubelet-preferred-address-types=InternalIP
- --kubelet-insecure-tls
ports:
- name: main-port
containerPort: 4443
protocol: TCP
securityContext:
readOnlyRootFilesystem: true
runAsNonRoot: true
runAsUser: 1000
volumeMounts:
- name: tmp-dir
mountPath: /tmp
nodeSelector:
kubernetes.io/os: linux
apiVersion: v1 kind: Service metadata: name: metrics-server namespace: kube-system labels: kubernetes.io/name: “Metrics-server” kubernetes.io/cluster-service: “true” spec: selector: k8s-app: metrics-server ports:
- port: 443 protocol: TCP targetPort: main-port
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: system:metrics-server rules:
- apiGroups:
- “” resources:
- pods
- nodes
- nodes/stats
- namespaces
- configmaps verbs:
- get
- list
- watch
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: system:metrics-server roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:metrics-server subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-system
查看metric.k8s.io是否出现在Kubernetes集群的API群组列表中:部署metric-server:
```bash
# kubectl apply -f components.yaml
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
serviceaccount/metrics-server created
deployment.apps/metrics-server created
service/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
# kubectl api-versions | grep metrics
metrics.k8s.io/v1beta1
使用
kubectl top
命令可显示节点和Pod对象的资源使用信息,它依赖于集群中的资源指标API来收集各项指标数据。它包含有Node和Pod两个子命令,可分别显示Node对象和Pod对象的相关资源占用率。
列出Node资源占用率命令的语法格式为“kubectl top node [-l label | NAME]
”,例如下面显示所有节点的资源占用状况的结果中显示了各节点累计CPU资源占用时长及百分比,以及内容空间占用量及占用比例。必要时,也可以在命令直接给出要查看的特定节点的标识,以及使用标签选择器进行节点过滤。
而名称空间级别的Pod对象资源占用率的使用方法会略有不同,使用时,一般应该跟定名称空间及使用标签选择器过滤出目标Pod对象。例如,下面显示kube-system名称空间下的Pod资源使用状况:[root@master metric]# kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
master 282m 14% 1902Mi 51%
node-02 70m 3% 1371Mi 37%
node-03 121m 1% 892Mi 11%
[root@master metric]# kubectl top pods -n kube-system
NAME CPU(cores) MEMORY(bytes)
etcd-master 32m 300Mi
kube-apiserver-master 86m 342Mi
kube-controller-manager-master 30m 48Mi
kube-flannel-ds-l5ghn 5m 10Mi
kube-flannel-ds-rqlm2 4m 12Mi
kube-flannel-ds-v92r9 4m 14Mi
kube-proxy-7vjcv 18m 15Mi
kube-proxy-xrz8f 13m 21Mi
kube-proxy-zpwn6 1m 14Mi
kube-scheduler-master 7m 17Mi
metrics-server-5549c7694f-7vb66 2m 14Mi
kubectl top
命令为用户提供简洁、快速获取Node对象及Pod对象系统资源占用状况的接口,是集群运行和维护的常用命令之一。