生产者在给broker发送数据的时候可能会造成数据的重复,Exactly Once可以帮我们去重,但是只能是分区内去重复.
将服务器的ACK级别设置为-1,可以保证Producer到Server之间不会丢失数据,即At Least Once语义。相对的,将服务器ACK级别设置为0,可以保证生产者每条消息只会被发送一次,即At Most Once语义。
但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即Exactly Once语义。
在0.11版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
0.11版本的Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指Producer不论向Server发送多少次重复数据,Server端都只会持久化一条。幂等性结合At Least Once语义,就构成了Kafka的Exactly Once语义。即:
At Least Once + 幂等性 = Exactly Once
要启用幂等性,只需要将Producer的参数中enable.idompotence设置为true即可。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的Producer在初始化的时候会被分配一个PID,发往同一Partition的消息会附带Sequence Number。而Broker端会对
但是PID重启就会变化,同时不同的Partition也具有不同主键,所以幂等性无法保证跨分区跨会话的Exactly Once。
对于某些比较重要的消息,我们需要保证exactly once语义,即保证每条消息被发送且仅被发送一次。
在0.11版本之后,Kafka Producer引入了幂等性机制(idempotent),配合acks = -1时的at least once语义,实现了producer到broker的exactly once语义。
idempotent + at least once = exactly once
实现Exactly Once配置
使用时,只需将enable.idempotence属性设置为true,kafka自动将acks属性设为-1,并将retries属性设为Integer.MAX_VALUE。