属性
private static final long serialVersionUID = 362498820763181265L;//初始化容量 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 static final int MAXIMUM_CAPACITY = 1 << 30; static final float DEFAULT_LOAD_FACTOR = 0.75f;//数组转树阈值 static final int TREEIFY_THRESHOLD = 8; // static final int UNTREEIFY_THRESHOLD = 6;//hashtable容量大于64才会数组转红黑树,否则会先扩容数组 static final int MIN_TREEIFY_CAPACITY = 64;// transient Node<K,V>[] table; transient int modCount;//The next size value at which to resize (capacity * load factor). int threshold; final float loadFactor; transient Set<Map.Entry<K,V>> entrySet;//The number of key-value mappings contained in this map. transient int size;
构造方法
//initialCapacity初始化容量 //loadFactor负载因子 //threshold阈值 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } //找到大于或等于cap的最小2的幂 //无符号位运算>>> static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
put方法
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //如果当前table没有初始化(引用=null并且table长度=0) if ((tab = table) == null || (n = tab.length) == 0) //初始化table容量 n = (tab = resize()).length; //找到要插入元素的table下标,判断为null则直接插入 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); //否则 else { //如果hash相同并且key也相同 Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) //先用Node<K,V> e保存p e = p; //红黑树插入 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { //数组元素是链表 for (int binCount = 0; ; ++binCount) { //p.next如果为null,直接插入 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //如果哈希碰撞就退出循环 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //处理哈希碰撞 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } //操作数加一 ++modCount; //扩容处理 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
resize方法
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; //oldTab只初始化没有数据 if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; //oldTab有数据 if (oldTab != null) { //扩容,整个数组移动,数组下标是根据数组容量和key的hashcode决定的 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; //如果指定下标的数组元素有值,需要先置空 if ((e = oldTab[j]) != null) { oldTab[j] = null; //桶只有一个元素则直接存放到数组新下标处的位置 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //如果是树结构 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //是链表结构 else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; //容量扩容2幂次,假设为两倍,数组分为原长度+新增的一倍长度 //在原来位置(低位) if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } //数组位置(高位) else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }