【定义】
HashMap是一个散列表,存储的内容是键值对(key-value)映射。
【内容】
1、继承关系:
public class HashMap
Cloneable接口:克隆一个HashMap对象并返回;
Serializable接口:分别实现了串行读取、写入功能。
串行写入函数是writeObject(),它的作用是将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中。
而串行读取函数是readObject(),它的作用是将HashMap的“总的容量,实际容量,所有的Entry”依次读出。
table用来初始化(必须是二的n次幂)
用来放缓存
HashMap中存储的数量
用来记录HashMap的修改次数
用来调整大小下一个容量的值计算方式为(容量*负载因子)
哈希表的加载因子
2、基本属性:
static final int DEFAULT_INITIAL_CAPACITY=1<<4; //默认初始化大小16
static final float DEFAULT_LOAD_FACTOR =0.75f; //负载因子0.75
static final Entry<?,?>[] EMPTY_TABLE=[];//初始化的默认数组
transient int size;//HashMap中元素的数量
int threshold;//判断是否需要调整HashMap的容量
HashMap的扩容操作是一项非常耗时的任务,所以如果能估算Map的容量,最好给它一个默认初始值,避免进行多次扩容。HashMap的线程是不安全的,多线程环境中推荐是concurrentHashMap。
3、数据存储结构
HashMap采用Entry数组来存储key-value对,每一个键值对组成了一个Entry实体,Entry类实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Entry实体,以此来解决Hash冲突的问题。
数组存储区间是连续的,占用内存严重,故空间复杂度很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难。
链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N);链表的特点是:寻址困难,插入和删除容易。
数组+链表组成;
HashMap里面实现一个静态内部类Entry,其重要属性hash,key,value,next。
数组中存储的是最后插入的元素;
public V put(K key, V
value) {
if (key == null)
return putForNullKey(value);
//null总是放在数组的第一个链表中
int hash =
hash(key.hashCode());
int i = indexFor(hash,
table.length);
//遍历链表
for (Entry
Object k;
//如果key在链表中已存在,则替换为新value
if (e.hash == hash &&
((k = e.key) == key || key.equals(k))) {
V oldValue =
e.value;
e.value =
value;
e.recordAccess(this);
return
oldValue;
}
}
modCount++;
addEntry(hash, key, value,
i);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex)
{
Entry
table[bucketIndex] = new
Entry
//如果size超过threshold,则扩充table大小。再散列
if (size++ >=
threshold)
resize(2 *
table.length);
}
4、构造方法:
HashMap()//无参构造方法
HahsMap(int initialCapacity)//指定初始容量的构造方法
HashMap(int initialCapacity,float loadFactor)//指定初始化容量和负载因子。
HashMap(Map<? extends K,?extends V> m)//指定集合,转化为HashMap
HashMap提供了四个构造方法,构造方法中 ,依靠第三个方法来执行的,但是前三个方法都没有进行数组的初始化操作,即使调用了构造方法此时存放HaspMap中数组元素的table表长度依旧为0 。在第四个构造方法中调用了inflateTable()方法完成了table的初始化操作,并将m中的元素添加到HashMap中。
5、添加方法:
在该方法中,添加键值对时,首先进行table是否初始化的判断,如果没有进行初始化(分配空间,Entry[]数组的长度)。然后进行key是否为null的判断,如果key==null ,放置在Entry[]的0号位置。计算在Entry[]数组的存储位置,判断该位置上是否已有元素,如果已经有元素存在,则遍历该Entry[]数组位置上的单链表。判断key是否存在,如果key已经存在,则用新的value值,替换点旧的value值,并将旧的value值返回。如果key不存在于HashMap中,程序继续向下执行。将key-vlaue, 生成Entry实体,添加到HashMap中的Entry[]数组中。
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
6、addEntry()
添加到方法的具体操作,在添加之前先进行容量的判断,如果当前容量达到了阈值,并且需要存储到Entry[]数组中,先进性扩容操作,空充的容量为table长度的2倍。重新计算hash值,和数组存储的位置,扩容后的链表顺序与扩容前的链表顺序相反。然后将新添加的Entry实体存放到当前Entry[]位置链表的头部。在1.8之前,新插入的元素都是放在了链表的头部位置,但是这种操作在高并发的环境下容易导致死锁,所以1.8之后,新插入的元素都放在了链表的尾部。
/*
* hash hash值
* key 键值
* value value值
* bucketIndex Entry[]数组中的存储索引
* /
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold)&& (null != table[bucketIndex])) {
resize(2 * table.length); //扩容操作,将数据元素重新计算位置后放入newTable中,链表的顺序与之前的顺序相反
hash = (null != key) ? hash(key): 0;
bucketIndex = indexFor(hash,table.length);
}
createEntry(hash,key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
7、获取方法:get
在get方法中,首先计算hash值,然后调用indexFor()方法得到该key在table中的存储位置,得到该位置的单链表,遍历列表找到key和指定key内容相等的Entry,返回entry.value值。
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
8、删除方法
删除操作,先计算指定key的hash值,然后计算出table中的存储位置,判断当前位置是否Entry实体存在,如果没有直接返回,若当前位置有Entry实体存在,则开始遍历列表。定义了三个Entry引用,分别为pre, e ,next。 在循环遍历的过程中,首先判断pre 和 e 是否相等,若相等表明,table的当前位置只有一个元素,直接将table[i] = next = null 。若形成了pre -> e -> next 的连接关系,判断e的key是否和指定的key 相等,若相等则让pre -> next ,e 失去引用。
public V remove(Object key) {
Entry<K,V> e =removeEntryForKey(key);
return (e == null ? null :e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 :
hash(key);
int i = indexFor(hash,
table.length);
Entry<K,V> prev =table[i];
Entry<K,V> e = prev;
while(e != null) {
Entry<K,V> next =e.next;
Object k;
if (e.hash == hash&&((k = e.key) == key || (key!= null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] =next;
else
prev.next =next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
9、JDK1.8版本中的改变
(1)采用数组+链表+红黑树实现
在Jdk1.8中HashMap的实现方式做了一些改变,但是基本思想还是没有变得,只是在一些地方做了优化,下面来看一下这些改变的地方,数据结构的存储由数组+链表的方式,变化为数组+链表+红黑树的存储方式,当链表长度超过阈值(8)时,将链表转换为红黑树。在性能上进一步得到提升。
当链表的值超过8则会转红黑树(1.8新增)
当链表的值小于6则会从红黑树转回链表
当Map里面的数量超过这个值时,表中的桶才能进行树形化 ,否则桶内元素太多时会扩容,而不是树形化 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 TREEIFY_THRESHOLD
*HashMap为什么要使用红黑树呢
因为Map中桶的元素初始化是链表保存的,其查找性能是O(n),而树结构能将查找性能提升到O(log(n))。当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。至于为什么阈值是8,我想,去源码中找寻答案应该是最可靠的途径。
(2)put方法:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
10、HashMap与HashTable的相同点和不同点
相同点:
HashMap和Hashtable都是存储“键值对(key-value)”的散列表,而且都是采用拉链法实现的。
存储的思想都是:通过table数组存储,数组的每一个元素都是一个Entry;而一个Entry就是一个单向链表,Entry链表中的每一个节点就保存了key-value键值对数据。
添加key-value键值对:首先,根据key值计算出哈希值,再计算出数组索引(即,该key-value在table中的索引)。然后,根据数组索引找到Entry(即,单向链表),再遍历单向链表,将key和链表中的每一个节点的key进行对比。若key已经存在Entry链表中,则用该value值取代旧的value值;若key不存在Entry链表中,则新建一个key-value节点,并将该节点插入Entry链表的表头位置。
删除key-value键值对:删除键值对,相比于“添加键值对”来说,简单很多。首先,还是根据key计算出哈希值,再计算出数组索引(即,该key-value在table中的索引)。然后,根据索引找出Entry(即,单向链表)。若节点key-value存在与链表Entry中,则删除链表中的节点即可。
不同点:
(1)线程安全:
两者最主要的区别在于Hashtable是线程安全,而HashMap则非线程安全。
Hashtable的实现方法里面都添加了synchronized关键字来确保线程同步,因此相对而言HashMap性能会高一些,我们平时使用时若无特殊需求建议使用HashMap,在多线程环境下若使用HashMap需要使用Collections.synchronizedMap()方法来获取一个线程安全的集合。
(2)针对null的不同
HashMap可以使用null作为key,而Hashtable则不允许null作为key
虽说HashMap支持null值作为key,不过建议还是尽量避免这样使用,因为一旦不小心使用了,若因此引发一些问题,排查起来很是费事。
(3)继承结构不同
HashMap是对Map接口的实现,HashTable实现了Map接口和Dictionary抽象类。
(4)初识容量与扩容不同
HashMap的初始容量为16,Hashtable初始容量为11,两者的填充因子默认都是0.75。
HashMap扩容时是当前容量翻倍即:capacity2,Hashtable扩容时是容量翻倍+1即:capacity2+1。
(5)两者计算hash的方法不同
Hashtable计算hash是直接使用key的hashcode对table数组的长度直接进行取模
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
HashMap计算hash对key的hashcode进行了二次hash,以获得更好的散列值,然后对table数组长度取摸。
int
hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
static
int hash(int h) {
// This function ensures that
hashCodes that differ only by
// constant multiples at each bit
position have a bounded
// number of collisions
(approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h
12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
static int indexFor(int h, int length) {
return h & (length-1);
11、对外接口:
clear():清空HashMap。它是通过将所有的元素设为null来实现的;
containsKey():判断HashMap是否包含key;
containsValue():判断HashMap是否包含“值为value”的元素;
entrySet()、values()、keySet():返回“HashMap中所有对应的集合”,它是一个集合;
get():获取key对应的value;
put():对外提供接口,让HashMap对象可以通过put()将“key-value”添加到HashMap中;
putAll():将”m”的全部元素都添加到HashMap中;
remove():删除“键为key”元素。
【总结】
总的来说,HashMap就是数组+链表的组合实现,每个数组元素存储一个链表的头结点,本质上来说是哈希表“拉链法”的实现。
HashMap的链表元素对应的是一个静态内部类Entry,Entry主要包含key,value,next三个元素
主要有put和get方法,put的原理是,通过hash%Entry.length计算index,此时记作Entry[index]=该元素。如果index相同
就是新入的元素放置到Entry[index],原先的元素记作Entry[index].next
get就比较简单了,先遍历数组,再遍历链表元素。
null key总是放在Entry数组的第一个元素
解决hash冲突的方法:链地址法
再散列rehash的过程:确定容量超过目前哈希表的容量,重新调整table 的容量大小,当超过容量的最大值时,取 Integer.Maxvalue
ConcurrentHashMap
put思路:
put(key ,value)
int hashcode = hash(key);
int index =hsahcode % table.length;
// 1、插入到头部;2、移动
table[index] = new Entry(key,value,table[index]);
get(周瑜)思路:
int hashcode = hash(key);
int index = hashcode %table.length