第1部分:何为索引,有什么用?

索引是一种用于快速查询和检索数据的数据结构。常见的索引结构有:B 树,B+树和Hash。
索引的作用就相当于目录的作用。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。

第2部分:索引的优缺点

优点

  • 使用索引可以大大加快数据的检索速度(大大减少检索的数据量),这也是创建索引的最主要的原因。
  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

缺点

  • 创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
  • 索引需要使用物理文件存储,也会耗费一定空间。

但是,使用索引一定能提高查询性能吗?
大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升

第3部分:索引的底层数据结构

3.1 Hash表&B+树

- Hash索引的限制和弊端

Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B+Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B+Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B+Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B+Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。

  • Hash 索引仅仅能满足”=”,”IN” 和 “<=>” 查询,不能使用范围查询。由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样;
  • Hash 索引无法被用来避免数据的排序操作。由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且 Hash 值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;
  • Hash 索引不能利用部分索引键查询。对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用;
  • Hash 索引在任何时候都不能避免表扫描。前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果;
  • Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B+Tree索引高。对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

- B+索引和Hash索引的区别

  • 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
  • 如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
  • 同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
  • 哈希索引也不支持多列联合索引的最左匹配规则;
  • B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。

    3.2 B树&B+树

    3.2.1 B树

    - B树概述

    B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树(多路平衡查找树
    它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图。
    MySQL索引总结 - 图1
    B-树有如下特点:
  1. 所有键值分布在整颗树中(索引值和具体data都在每个节点里);
  2. 任何一个关键字只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束(最好情况 O(1) 就能找到数据);
  4. 在关键字全集内做一次查找,性能逼近二分查找。

    - B树深入

    B树由来:

    定义:B-树是一类树,包括B-树、B+树、B树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。
    *B-树是专门为外部存储器设计的,如磁盘,它对于读取和写入大块数据有良好的性能,所以一般被用在文件系统及数据库中。

定义只需要知道B-树允许每个节点有更多的子节点即可(多叉树)。子节点数量一般在上千,具体数量依赖外部存储器的特性。
先来看看为什么会出现B-树这类数据结构。
传统用来搜索的平衡二叉树有很多,如 AVL 树,红黑树等。这些树在一般情况下查询性能非常好,但当数据非常大的时候它们就无能为力了。原因当数据量非常大时,内存不够用,大部分数据只能存放在磁盘上,只有需要的数据才加载到内存中。一般而言内存访问的时间约为 50 ns,而磁盘在 10 ms 左右。速度相差了近 5 个数量级,磁盘读取时间远远超过了数据在内存中比较的时间。这说明程序大部分时间会阻塞在磁盘 IO 上。那么我们如何提高程序性能?减少磁盘 IO 次数,像 AVL 树,红黑树这类平衡二叉树从设计上无法“迎合”磁盘。
MySQL索引总结 - 图2
上图是一颗简单的平衡二叉树,平衡二叉树是通过旋转来保持平衡的,而旋转是对整棵树的操作,若部分加载到内存中则无法完成旋转操作。其次平衡二叉树的高度相对较大为 log n(底数为2),这样逻辑上很近的节点实际可能非常远,无法很好的利用磁盘预读(局部性原理),所以这类平衡二叉树在数据库和文件系统上的选择就被 pass 了。

空间局部性原理:如果一个存储器的某个位置被访问,那么将它附近的位置也会被访问。

我们从“迎合”磁盘的角度来看看B-树的设计。
索引的效率依赖于磁盘 IO 的次数,快速索引需要有效的减少磁盘 IO 次数,如何快速索引呢?索引的原理其实是不断的缩小查找范围,就如我们平时用字典查单词一样,先找首字母缩小范围,再第二个字母等等。平衡二叉树是每次将范围分割为两个区间。为了更快,B-树每次将范围分割为多个区间,区间越多,定位数据越快越精确。那么如果节点为区间范围,每个节点就较大了。所以新建节点时,直接申请页大小的空间(磁盘存储单位是按 block 分的,一般为 512 Byte。磁盘 IO 一次读取若干个 block,我们称为一页,具体大小和操作系统有关,一般为 4 k,8 k或 16 k),计算机内存分配是按页对齐的,这样就实现了一个节点只需要一次 IO。
MySQL索引总结 - 图3
上图是一棵简化的B-树,多叉的好处非常明显,有效的降低了B-树的高度,为底数很大的 log n,底数大小与节点的子节点数目有关,一般一棵B-树的高度在 3 层左右。层数低,每个节点区确定的范围更精确,范围缩小的速度越快(比二叉树深层次的搜索肯定快很多)。上面说了一个节点需要进行一次 IO,那么总 IO 的次数就缩减为了 log n 次。B-树的每个节点是 n 个有序的序列(a1,a2,a3…an),并将该节点的子节点分割成 n+1 个区间来进行索引。

B树的每个节点,都是存多个值的,不像二叉树那样,一个节点就一个值,B树把每个节点都给了一点的范围区间,区间更多的情况下,搜索也就更快了,比如:有1-100个数,二叉树一次只能分两个范围,0-50和51-100,而B树,分成4个范围 1-25, 25-50,51-75,76-100一次就能筛选走四分之三的数据。所以作为多叉树的B树是更快的

- B树的查找

我们来看看B-树的查找,假设每个节点有 n 个 key值,被分割为 n+1 个区间,注意,每个 key 值紧跟着 data 域,这说明B-树的 key 和 data 是聚合在一起的。一般而言,根节点都在内存中,B-树以每个节点为一次磁盘 IO,比如上图中,若搜索 key 为 25 节点的 data,首先在根节点进行二分查找(因为 keys 有序,二分最快),判断 key 25 小于 key 50,所以定位到最左侧的节点,此时进行一次磁盘 IO,将该节点从磁盘读入内存,接着继续进行上述过程,直到找到该 key 为止。
查找伪代码:

  1. Data* BTreeSearch(Root *node, Key key)
  2. {
  3. Data* data;
  4. if(root == NULL)
  5. return NULL;
  6. data = BinarySearch(node);
  7. if(data->key == key)
  8. {
  9. return data;
  10. }else{
  11. node = ReadDisk(data->next);
  12. BTreeSearch(node, key);
  13. }
  14. }

3.2.2 B+树

- B+树概述

B+树是B-树的变体,也是一种多路搜索树,它与 B- 树的不同之处在于:

  1. 所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data);
  2. 为所有叶子结点增加了一个链指针。

简化 B+树 如下图:
MySQL索引总结 - 图4
因为内节点并不存储 data,所以一般B+树的叶节点和内节点大小不同,而B-树的每个节点大小一般是相同的,为一页。
为了增加 区间访问性,一般会对B+树做一些优化。如下图带顺序访问的B+树。
MySQL索引总结 - 图5

3.2.3 B-树和B+树的区别

  1. B+树内节点不存储数据,所有 data 存储在叶节点导致查询时间复杂度固定为 **log n**。而B-树查询时间复杂度不固定,与 key 在树中的位置有关,最好为**O(1)**如下所示B-树/B+树查询节点 key 为 50 的 data。

B-树:
MySQL索引总结 - 图6
从上图可以看出,key 为 50 的节点就在第一层,B-树只需要一次磁盘 IO 即可完成查找。所以说B-树的查询最好时间复杂度是 O(1)。
B+树:
MySQL索引总结 - 图7
由于B+树所有的 data 域都在根节点,所以查询 key 为 50的节点必须从根节点索引到叶节点,时间复杂度固定为**O(log n)**

B树的由于每个节点都有key和data,所以查询的时候可能不需要O(logn)的复杂度,甚至最好的情况是O(1)就可以找到数据,而B+树由于只有叶子节点保存了data,所以必须经历O(logn)复杂度才能找到数据。

  1. B+树叶节点两两相连可大大增加区间访问性,可使用在范围查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找。

MySQL索引总结 - 图8
根据空间局部性原理:如果一个存储器的某个位置被访问,那么将它附近的位置也会被访问。
B+树可以很好的利用局部性原理,若我们访问节点 key为 50,则 key 为 55、60、62 的节点将来也可能被访问,我们可以利用磁盘预读原理提前将这些数据读入内存,减少了磁盘 IO 的次数。
当然B+树也能够很好的完成范围查询。比如查询 key 值在 50-70 之间的节点。

由于B+树的叶子节点的数据都是使用链表连接起来的,而且他们在磁盘里是顺序存储的,所以当读到某个值的时候,磁盘预读原理就会提前把这些数据都读进内存,使得范围查询和排序都很快

  1. B+树更适合外部存储。由于内节点无 data 域,每个节点能索引的范围更大更精确

这个很好理解,由于B-树节点内部每个 key 都带着 data 域,而B+树节点只存储 key 的副本,真实的 key 和 data 域都在叶子节点存储。前面说过磁盘是分 block 的,一次磁盘 IO 会读取若干个 block,具体和操作系统有关,那么由于磁盘 IO 数据大小是固定的,在一次 IO 中,单个元素越小,量就越大这就意味着B+树单次磁盘 IO 的信息量大于B-树,从这点来看B+树相对B-树磁盘 IO 次数少。

由于B树的节点都存了key和data,而B+树只有叶子节点存data,非叶子节点都只是索引值,没有实际的数据,这就时B+树在一次IO里面,能读出的索引值更多。从而减少查询时候需要的IO次数!

MySQL索引总结 - 图9
从上图可以看出相同大小的区域,B-树仅有 2 个 key,而B+树有 3 个 key。

3.2.4 MyISAM和InnoDB引擎中的索引结构

在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。
MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引”。
InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(或聚集索引)”,而其余的索引都作为辅助索引,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,在走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

第4部分:索引类型

4.1 简介

MySQL目前主要有以下几种索引类型:

  • 普通索引:仅加速查询
  • 唯一索引:加速查询 + 列值唯一(可以有null)
  • 主键索引:加速查询 + 列值唯一(不可以有null)+ 表中只有一个
  • 组合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并
  • 全文索引:对文本的内容进行分词,进行搜索
  • 索引合并:使用多个单列索引组合搜索
  • 覆盖索引:select的数据列只用从索引中就能够取得,不必读取数据行,换句话说查询列要被所建的索引覆盖
  • 聚簇索引:表数据是和主键一起存储的,主键索引的叶结点存储行数据(包含了主键值),二级索引的叶结点存储行的主键值。使用的是B+树作为索引的存储结构,非叶子节点都是索引关键字,但非叶子节点中的关键字中不存储对应记录的具体内容或内容地址。叶子节点上的数据是主键与具体记录(数据内容)

创建索引语句:

  1. CREATE TABLE table_name[col_name data type]
  2. [unique|fulltext][index|key][index_name](col_name[length])[asc|desc]
  1. unique|fulltext为可选参数,分别表示唯一索引、全文索引
  2. index和key为同义词,两者作用相同,用来指定创建索引
  3. col_name为需要创建索引的字段列,该列必须从数据表中该定义的多个列中选择
  4. index_name指定索引的名称,为可选参数,如果不指定,默认col_name为索引值
  5. length为可选参数,表示索引的长度,只有字符串类型的字段才能指定索引长度
  6. asc或desc指定升序或降序的索引值存储

    4.2 主键索引(Primary Key)

    主键索引是一种特殊的唯一索引,一个表只能有一个主键,不允许有空值。一般是在建表的时候同时创建主键索引:

    1. CREATE TABLE `table` (
    2. `id` int(11) NOT NULL AUTO_INCREMENT ,
    3. `title` char(255) NOT NULL ,
    4. PRIMARY KEY (`id`)
    5. );

    4.3 普通索引

    最基本的索引,没有任何限制。有以下几种创建方式:

  7. 直接创建索引

    1. CREATE INDEX index_name ON table(column(length))
  8. 修改表结构的方式添加索引

    1. ALTER TABLE table_name ADD INDEX index_name ON (column(length))
  9. 创建表的时候同时创建索引

    1. CREATE TABLE `table` (
    2. `id` int(11) NOT NULL AUTO_INCREMENT ,
    3. `title` char(255) CHARACTER NOT NULL ,
    4. `content` text CHARACTER NULL ,
    5. `time` int(10) NULL DEFAULT NULL ,
    6. PRIMARY KEY (`id`),
    7. INDEX index_name (title(length))
    8. )
  10. 删除索引

    1. DROP INDEX index_name ON table

    4.4 唯一索引

    与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

  11. 创建唯一索引

    1. CREATE UNIQUE INDEX indexName ON table(column(length))
  12. 修改表结构

    1. ALTER TABLE table_name ADD UNIQUE indexName ON (column(length))
  13. 创建表的时候直接指定

    1. CREATE TABLE `table` (
    2. `id` int(11) NOT NULL AUTO_INCREMENT ,
    3. `title` char(255) CHARACTER NOT NULL ,
    4. `content` text CHARACTER NULL ,
    5. `time` int(10) NULL DEFAULT NULL ,
    6. UNIQUE indexName (title(length))
    7. );

    4.5 组合索引

    指多个字段上创建的索引,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用。使用组合索引时遵循最左前缀集合

    1. ALTER TABLE `table` ADD INDEX name_city_age (name,city,age);

    4.6 全文索引

    主要用来查找文本中的关键字,而不是直接与索引中的值相比较。fulltext索引跟其它索引大不相同,它更像是一个搜索引擎,而不是简单的where语句的参数匹配。fulltext索引配合match against操作使用,而不是一般的where语句加like。它可以在create table,alter table ,create index使用,不过目前只有char、varchar,text 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE index创建fulltext索引,要比先为一张表建立fulltext然后再将数据写入的速度快很多。

  14. 创建表的时候添加全文索引

    1. CREATE TABLE `table` (
    2. `id` int(11) NOT NULL AUTO_INCREMENT ,
    3. `title` char(255) CHARACTER NOT NULL ,
    4. `content` text CHARACTER NULL ,
    5. `time` int(10) NULL DEFAULT NULL ,
    6. PRIMARY KEY (`id`),
    7. FULLTEXT (content)
    8. );
  15. 修改表结构添加全文索引

    1. ALTER TABLE article ADD FULLTEXT index_content(content)
  16. 直接创建索引

    1. CREATE FULLTEXT INDEX index_content ON article(content)

    第5部分:聚集索引与非聚集索引

    https://www.cnblogs.com/jiawen010/p/11805241.html

5.1 聚集索引

聚集索引即索引结构和数据一起存放的索引。主键索引属于聚集索引。
在 Mysql 中,InnoDB 引擎的表的 .ibd文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。
优缺点:

  1. 😁聚集索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。
  2. 😑依赖于有序的数据:因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
  3. 😑更新代价大:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚集索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。

    5.2 非聚集索引

    非聚集索引即索引结构和数据分开存放的索引。

    MYISAM 引擎的表的.MYI 文件包含了表的索引,该表的索引(B+树)的每个叶子非叶子节点存储索引, 叶子节点存储索引和索引对应数据的指针,指向.MYD 文件的数据。 非聚集索引的叶子节点并不一定存放数据的指针, 可能存放的是主键,根据主键再回表查数据。

优缺点:

  1. 😁更新代价比聚集索引要小。非聚集索引的更新代价就没有聚集索引那么大了,非聚集索引的叶子节点是不存放数据的
  2. 😑跟聚集索引一样,非聚集索引也依赖于有序的数据
  3. 😑可能会二次查询(回表):这应该是非聚集索引最大的缺点了。 当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。

这是 MySQL 的表的文件截图:
image.png
聚集索引和非聚集索引:
image.png

5.3 非聚集索引一定回表查询吗(覆盖索引)?

非聚集索引不一定回表查询。试想一种情况,用户准备使用 SQL 查询用户名,而用户名字段正好建立了索引。

  1. SELECT name FROM table WHERE name='guang';

那么这个索引的 key 本身就是 name,查到对应的 name 直接返回就行了,无需回表查询。
即使是 MYISAM 也是这样,虽然 MYISAM 的主键索引确实需要回表, 因为它的主键索引的叶子节点存放的是指针。但是如果 SQL 查的就是主键呢?

  1. SELECT id FROM table WHERE id=1;

主键索引本身的 key 就是主键,查到返回就行了。这种情况就称之为覆盖索引了。

第6部分:覆盖索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道在MYISAM存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢。覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!
覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。

如主键索引,如果一条 SQL 需要查询主键,那么正好根据主键索引就可以查到主键。 再如普通索引,如果一条 SQL 需要查询 name,name 字段正好有索引, 那么直接根据这个索引就可以查到数据,也无需回表。

image.png

第7部分:创建索引的注意事项⭕

7.1 选择合适的字段创建索引

  • 不为 NULL 的字段:索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0、1、true、false 这样语义较为清晰的短值或短字符作为替代。
  • 被频繁查询的字段:我们创建索引的字段应该是查询操作非常频繁的字段。
  • 被作为条件查询的字段:被作为 WHERE 条件查询的字段,应该被考虑建立索引。
  • 频繁需要排序的字段:索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
  • 被经常频繁用于连接的字段:经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。

    7.2 被频繁更新的字段应该慎重建立索引

    虽然索引能带来查询上的效率,但是维护索引的成本也是不小的。 如果一个字段不被经常查询,反而被经常修改,那么就更不应该在这种字段上建立索引了。

    7.3 尽可能的考虑建立联合索引而不是单列索引

    因为索引是需要占用磁盘空间的,可以简单理解为每个索引都对应着一颗 B+树。如果一个表的字段过多,索引过多,那么当这个表的数据达到一个体量后,索引占用的空间也是很多的,且修改索引时,耗费的时间也是较多的。如果是联合索引,多个字段在一个索引上,那么将会节约很大磁盘空间,且修改数据的操作效率也会提升。

    7.4 注意避免冗余索引

    冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city )和(name )这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者的 在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。

    7.5 考虑在字符串类型的字段上使用前缀索引代替普通索引

    前缀索引仅限于字符串类型,较普通索引会占用更小的空间,所以可以考虑使用前缀索引带替普通索引。

    第8部分:使用索引的注意事项⭕

    8.1 不要在列上使用函数

    不要在列上使用函数,这将导致索引失效而进行全表扫描。
    1. select * from news where year(publish_time) < 2017
    为了使用索引,防止执行全表扫描,可以进行改造。
    1. select * from news where publish_time < '2017-01-01'
    还有一个建议,不要在列上进行运算,这也将导致索引失效而进行全表扫描。
    1. select * from news where id / 100 = 1
    为了使用索引,防止执行全表扫描,可以进行改造。
    1. select * from news where id = 1 * 100

    8.2 尽量避免使用 != 或 not in 或 <> 等否定操作符

    应该尽量避免在 where 子句中使用 != 或 not in 或 <> 操作符,因为这几个操作符都会导致索引失效而进行全表扫描。尽量避免使用 or 来连接条件 应该尽量避免在 where 子句中使用 or 来连接条件,因为这会导致索引失效而进行全表扫描。
    1. select * from news where id = 1 or id = 2

    8.3 多个单列索引并不是最佳选择

    MySQL 只能使用一个索引,会从多个索引中选择一个限制最为严格的索引,因此,为多个列创建单列索引,并不能提高 MySQL 的查询性能。假设,有两个单列索引,分别为 news_year_idx(news_year) 和 news_month_idx(news_month)。现在,有一个场景需要针对资讯的年份和月份进行查询,那么,SQL 语句可以写成:
    1. select * from news where news_year = 2017 and news_month = 1
    事实上,MySQL 只能使用一个单列索引。为了提高性能,可以使用复合索引 news_year_month_idx(news_year, news_month) 保证 news_year 和 news_month 两个列都被索引覆盖。

    8.4 复合索引的最左前缀原则

    复合索引遵守“最左前缀”原则,即在查询条件中使用了复合索引的第一个字段,索引才会被使用。因此,在复合索引中索引列的顺序至关重要。如果不是按照索引的最左列开始查找,则无法使用索引。假设,有一个场景只需要针对资讯的月份进行查询,那么,SQL 语句可以写成:
    1. select * from news where news_month = 1
    此时,无法使用 news_year_month_idx(news_year, news_month) 索引,因为遵守“最左前缀”原则,在查询条件中没有使用复合索引的第一个字段,索引是不会被使用的。

    8.5 覆盖索引的好处

    如果一个索引包含所有需要的查询的字段的值,直接根据索引的查询结果返回数据,而无需读表,能够极大的提高性能。因此,可以定义一个让索引包含的额外的列,即使这个列对于索引而言是无用的。

    8.6 范围查询对多列查询的影响

    查询中的某个列有范围查询,则其右边所有列都无法使用索引优化查找。举个例子,假设有一个场景需要查询本周发布的资讯文章,其中的条件是必须是启用状态,且发布时间在这周内。那么,SQL 语句可以写成:
    1. select * from news where publish_time >= '2017-01-02' and publish_time <= '2017-01-08' and enable = 1
    这种情况下,因为范围查询对多列查询的影响,将导致 news_publish_idx(publish_time, enable) 索引中 publish_time 右边所有列都无法使用索引优化查找。换句话说,news_publish_idx(publish_time, enable) 索引等价于 news_publish_idx(publish_time) 。对于这种情况,我的建议:对于范围查询,务必要注意它带来的副作用,并且尽量少用范围查询,可以通过曲线救国的方式满足业务场景。例如,上面案例的需求是查询本周发布的资讯文章,因此可以创建一个news_weekth 字段用来存储资讯文章的周信息,使得范围查询变成普通的查询,SQL 可以改写成:
    1. select * from news where news_weekth = 1 and enable = 1
    然而,并不是所有的范围查询都可以进行改造,对于必须使用范围查询但无法改造的情况,我的建议:不必试图用 SQL 来解决所有问题,可以使用其他数据存储技术控制时间轴,例如 Redis 的 SortedSet 有序集合保存时间,或者通过缓存方式缓存查询结果从而提高性能。

    8.7 索引不会包含有NULL值的列

    只要列中包含有 NULL 值都将不会被包含在索引中,复合索引中只要有一列含有 NULL值,那么这一列对于此复合索引就是无效的。因此,在数据库设计时,除非有一个很特别的原因使用 NULL 值,不然尽量不要让字段的默认值为 NULL。

    8.8 隐式转换的影响

    当查询条件左右两侧类型不匹配的时候会发生隐式转换,隐式转换带来的影响就是可能导致索引失效而进行全表扫描。下面的案例中,date_str 是字符串,然而匹配的是整数类型,从而发生隐式转换。
    1. select * from news where date_str = 201701
    因此,要谨记隐式转换的危害,时刻注意通过同类型进行比较。

    8.9 like语句的索引失效问题

    like 的方式进行查询,在 like "value%" 可以使用索引,但是对于 like "%value%" 这样的方式,执行全表查询,这在数据量小的表,不存在性能问题,但是对于海量数据,全表扫描是非常可怕的事情。所以,根据业务需求,考虑使用 ElasticSearch 或 Solr 是个不错的方案。