- A. Mocha and Math">1559A. Mocha and Math
- B.Mocha and Red and Blue">1559B.Mocha and Red and Blue
- C.Mocha and Hiking">1559C.Mocha and Hiking
- D1.Mocha and Diana (Easy Version)">1559D1.Mocha and Diana (Easy Version)
- 1559D2. Mocha and Diana (Hard Version)">1559D2. Mocha and Diana (Hard Version)
- E. Mocha and Stars">1559E. Mocha and Stars
比赛链接:Here
1559A. Mocha and Math
题意:
给定一个区间,选择区间内的值执行 &
操作使得区间最大值最小化
观察样例发现:令 x = (1 << 30) - 1
后 答案
证明:
我们假设答案是 x。 在它的二进制表示中,只有在所有 的二进制表示中该位为
时,该位才会为
。否则,我们可以使用一个操作使 x 中的该位变为
,这是一个较小的答案。
所以我们可以初始设置 或者
。 然后我们对序列进行迭代,使
,最终 x 是 anwser。
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n;
cin >> n;
int x = (1 << 30) - 1;
for (int i = 0, a; i < n; ++i) {
cin >> a;
x &= a;
}
cout << x << "\n";
}
1559B.Mocha and Red and Blue
根据贪心思想,找到第一个非 ?
的下标,然后根据下标位置的值去枚举情况即可
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n; string s;
cin >> n >> s;
for (int i = 0; i < n; ++i)
if (s[i] == '?' and i and s[i - 1] != '?')
s[i] = 'R' ^ 'B' ^ s[i - 1];
if (s.back() == '?') s.back() = 'R';
for (int i = n - 2; i >= 0; --i)
if (s[i] == '?') s[i] = 'R' ^ 'B' ^ s[i + 1];
cout << s << "\n";
}
}
1559C.Mocha and Hiking
路线规律题,
如果 那么路径肯定有
%5Cto%201%5Cto2%5Cto…%5Cto%20n%5D#card=math&code=%5B%28n%20%2B%201%29%5Cto%201%5Cto2%5Cto…%5Cto%20n%5D&id=FPytq)
如果 那么路径为
%5D#card=math&code=%5B1%5Cto2%5Cto…%5Cto%20n%5Cto%20%28n%20%2B%201%29%5D&id=Fdw4N)
对于其他情况来说:由于 ,所以肯定存在整数
使得
,那么路径为
%5Cto%20(i%20%2B%201)%5Cto%20(i%20%2B%202)%5Cto…%5Cto%20n%5D#card=math&code=%5B1%5Cto%202%5Cto…%5Cto%20i%5Cto%28n%20%2B%201%29%5Cto%20%28i%20%2B%201%29%5Cto%20%28i%20%2B%202%29%5Cto…%5Cto%20n%5D&id=Vwyk1)
具体证明可以参考哈密顿路径
const int N = 1e4 + 10;
int a[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int _; for (cin >> _; _--;) {
int n; cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
int idx = n;
for (int i = 1; i < n; ++i)
if (a[i] == 0 and a[i + 1] == 1) {
idx = i; break;
}
if (a[1] == 1) {
cout << n + 1 << " ";
for (int i = 1; i <= n; ++i) cout << i << " \n"[i == n];
continue;
}
for (int i = 1; i <= idx; ++i)
cout << i << " ";
cout << n + 1 << " ";
for (int i = idx + 1; i <= n; ++i) cout << i << " ";
cout << "\n";
}
}
1559D1.Mocha and Diana (Easy Version)
D1是一个暴力枚举 + 并查集的裸题,D2就懵逼了,不知道怎么维护
const int N = 2e3 + 10;
int f1[N], f2[N];
int find1(int x) {return f1[x] == x ? x : f1[x] = find1(f1[x]);}
int find2(int x) {return f2[x] == x ? x : f2[x] = find2(f2[x]);}
void merge1(int x, int y) { f1[find1(x)] = find1(y);}
void merge2(int x, int y) { f2[find2(x)] = find2(y);}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n, m1, m2;
cin >> n >> m1 >> m2;
for (int i = 1; i <= n; ++i) f1[i] = f2[i] = i;
for (int i = 1, u, v; i <= m1; ++i) {
cin >> u >> v;
merge1(u, v);
}
for (int i = 1, u, v; i <= m2; ++i) {
cin >> u >> v;
merge2(u, v);
}
cout << min(n - m1 - 1, n - m2 - 1) << "\n";
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j) {
if (j == i) continue;
if (find1(i) != find1(j) && find2(i) != find2(j)) {
f1[find1(i)] = find1(j);
f2[find2(i)] = find2(j);
cout << i << " " << j << '\n';
}
}
}
1559D2. Mocha and Diana (Hard Version)
struct DSU {
vector<int> f, siz;
DSU(int n) : f(n), siz(n, 1) {iota(f.begin(), f.end(), 0);}
int find(int x) {return x == f[x] ? x : f[x] = find(f[x]);}
bool same(int x, int y) {return find(x) == find(y);}
bool merge(int x, int y) {
x = find(x), y = find(y);
if (x == y) return false;
siz[x] += siz[y];
f[y] = x;
return true;
}
int size(int x) {return siz[find(x)];}
};
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n, m1, m2;
cin >> n >> m1 >> m2;
DSU f1(n), f2(n);
for (int i = 0, u, v; i < m1; ++i) {
cin >> u >> v;
--u, --v;
f1.merge(u, v);
}
for (int i = 0, u, v; i < m2; ++i) {
cin >> u >> v;
--u, --v;
f2.merge(u, v);
}
int ans = n - 1 - max(m1, m2);
cout << ans << "\n";
vector<int> v1[n], v2[n];
while (ans > 0) {
for (int i = 0; i < n; ++i) v1[i].clear(), v2[i].clear();
for (int i = 0; i < n; ++i) {
v1[f1.find(i)].push_back(i);
v2[f2.find(i)].push_back(i);
}
int i = 0, j = 0;
while (1) {
while (i < n && f1.find(i) != i) i += 1;
while (j < n && f2.find(j) != j) j += 1;
if (i == n || j == n) break;
int a = -1, b = -1, c = -1, d = 0;
for (auto x : v1[i]) {
if (!f2.same(x, j)) a = x;
else c = x;
}
for (auto x : v2[j]) {
if (!f1.same(x, i)) b = x;
else c = x;
}
if (a != -1 && b != -1) {
cout << a + 1 << " " << b + 1 << "\n";
f1.merge(a, b);
f2.merge(b, a);
} else {
while (f1.same(d, i) || f2.same(d, j)) d += 1;
cout << c + 1 << " " << d + 1 << "\n";
f1.merge(c, d);
f2.merge(c, d);
}
ans -= 1;
i += 1, j += 1;
}
}
}
1559E. Mocha and Stars
E题在赛时没想到正解,现在学习一下官方的题解
说实话,似乎E题在多校见过?
首先让我们忽略 的限制,令
#card=math&code=f%28%5Bl_1%2Cl_2%2C…%2Cl_n%5D%2C%5Br_1%2Cr_2%2C…%2Cr_n%5D%2CM%29&id=pGMUF) 为整数
#card=math&code=%28a_1%2Ca_2%2C..%2Ca_n%29&id=OAeBO) 的个数满足以下两个条件
- 对于所有的
i
,都在
范围之间
所以我们可以通过前缀和优化背包DP来达到在 #card=math&code=%5Cmathcal%7BO%7D%28nM%29&id=GyKCo) 内完成计算
此时再来考虑 的约束条件,设
#card=math&code=%CE%BC%28n%29&id=XgTG3) 为莫比乌斯函数,
#card=math&code=g%28a_1%2Ca_2%2C%E2%80%A6%2Ca_n%29&id=QOp5A)为
,如果
#card=math&code=%28a_1%2Ca_2%2C%E2%8B%AF%2Ca_n%29&id=TY8n6) 满足我们提到的两个条件(没有
的约束),否则为
。
我们想要的答案是:
%3D1%5Dg(a1%2Ca_2%2C…%2Ca_n)%20%5C%5C%0A%3D%20%5Csum%5Climits%7Ba1%3Dl_1%7D%5E%7Br_1%7D%5Csum%5Climits%7Ba2%3Dl_2%7D%5E%7Br_2%7D…%5Csum%5Climits%7Ban%3Dl_n%7D%5E%7Br_n%7Dg(a_1%2Ca_2%2C…%2Ca_n)%5Csum%5Climits%7Bd%7C%5Cgcd(a1%2Ca_2%2C…%2Ca_n)%7D%CE%BC(d)%5C%5C%0A%3D%5Csum%5Climits%7Ba1%3Dl_1%7D%5E%7Br_1%7D%5Csum%5Climits%7Ba2%3Dl_2%7D%5E%7Br_2%7D…%5Csum%5Climits%7Ban%3Dl_n%7D%5E%7Br_n%7Dg(a_1%2Ca_2%2C…%2Ca_n)%5Csum%5Climits%7Bd%7Ca1%2Cd%7Ca_2%2C..%2Cd%7Ca_n%7D%CE%BC(d)%5C%5C%0A%3D%5Csum%5Climits%7Bd%3D1%7D%5EM%CE%BC(d)%5Csum%5Climits%7Ba_1%3D%E2%8C%88%5Cfrac%7Bl_1%7Dd%E2%8C%89%7D%5E%7B%E2%8C%8A%5Cfrac%7Br_1%7Dd%E2%8C%8B%7D…%5Csum%5Climits%7Ban%3D%E2%8C%88%5Cfrac%7Bl_n%7Dd%E2%8C%89%7D%5E%7B%E2%8C%8A%5Cfrac%7Br_n%7Dd%E2%8C%8B%7D%20g(a_1d%2Ca_2d%2C…%2Ca_nd)%0A%5Cend%7Barray%7D%0A#card=math&code=%5Cbegin%7Barray%7D%7Bll%7D%0A%5Csum%5Climits%7Ba1%3Dl_1%7D%5E%7Br_1%7D%5Csum%5Climits%7Ba2%3Dl_2%7D%5E%7Br_2%7D…%5Csum%5Climits%7Ban%3Dl_n%7D%5E%7Br_n%7D%5B%5Cgcd%28a_1%2Ca_2%2C…%2Ca_n%29%3D1%5Dg%28a_1%2Ca_2%2C…%2Ca_n%29%20%5C%5C%0A%3D%20%5Csum%5Climits%7Ba1%3Dl_1%7D%5E%7Br_1%7D%5Csum%5Climits%7Ba2%3Dl_2%7D%5E%7Br_2%7D…%5Csum%5Climits%7Ban%3Dl_n%7D%5E%7Br_n%7Dg%28a_1%2Ca_2%2C…%2Ca_n%29%5Csum%5Climits%7Bd%7C%5Cgcd%28a1%2Ca_2%2C…%2Ca_n%29%7D%CE%BC%28d%29%5C%5C%0A%3D%5Csum%5Climits%7Ba1%3Dl_1%7D%5E%7Br_1%7D%5Csum%5Climits%7Ba2%3Dl_2%7D%5E%7Br_2%7D…%5Csum%5Climits%7Ban%3Dl_n%7D%5E%7Br_n%7Dg%28a_1%2Ca_2%2C…%2Ca_n%29%5Csum%5Climits%7Bd%7Ca1%2Cd%7Ca_2%2C..%2Cd%7Ca_n%7D%CE%BC%28d%29%5C%5C%0A%3D%5Csum%5Climits%7Bd%3D1%7D%5EM%CE%BC%28d%29%5Csum%5Climits%7Ba_1%3D%E2%8C%88%5Cfrac%7Bl_1%7Dd%E2%8C%89%7D%5E%7B%E2%8C%8A%5Cfrac%7Br_1%7Dd%E2%8C%8B%7D…%5Csum%5Climits%7Ba_n%3D%E2%8C%88%5Cfrac%7Bl_n%7Dd%E2%8C%89%7D%5E%7B%E2%8C%8A%5Cfrac%7Br_n%7Dd%E2%8C%8B%7D%20g%28a_1d%2Ca_2d%2C…%2Ca_nd%29%0A%5Cend%7Barray%7D%0A&id=uIQ3M)
因为 可以被改写成
,等价于
f(%E2%8C%88%5Cfrac%20%7Bl1%7Dd%E2%8C%89%2C…%2C%E2%8C%88%5Cfrac%20%7Bl_n%7Dd%E2%8C%89%2C%E2%8C%8A%5Cfrac%20%7Br_1%7Dd%E2%8C%8B%2C…%2C%E2%8C%8A%5Cfrac%20%7Br_n%7Dd%E2%8C%8B%2C%E2%8C%8A%5Cfrac%20Md%E2%8C%8B)%0A#card=math&code=%5Csum%5Climits%7Bd%3D1%7D%5EM%CE%BC%28d%29f%28%E2%8C%88%5Cfrac%20%7Bl_1%7Dd%E2%8C%89%2C…%2C%E2%8C%88%5Cfrac%20%7Bl_n%7Dd%E2%8C%89%2C%E2%8C%8A%5Cfrac%20%7Br_1%7Dd%E2%8C%8B%2C…%2C%E2%8C%8A%5Cfrac%20%7Br_n%7Dd%E2%8C%8B%2C%E2%8C%8A%5Cfrac%20Md%E2%8C%8B%29%0A&id=kkQgB)
时间复杂度:%20%3D%20%5Cmathcal%7BO%7D(nM%5C%20log%5C%20M)#card=math&code=%5Cmathcal%7BO%7D%28n%5Csum%5Climits_%7Bi%3D1%7D%5EM%E2%8C%8A%5Cfrac%20Mi%E2%8C%8B%29%20%3D%20%5Cmathcal%7BO%7D%28nM%5C%20log%5C%20M%29&id=jTcTd)
#define maxn 100086
const int p = 998244353;
int n, m;
int l[maxn], r[maxn];
int f[maxn], sum[maxn];
int cal(int d) {
int M = m / d;
f[0] = 1;
for (int i = 1; i <= M; i++) f[i] = 0;
for (int i = 1; i <= n; i++) {
int L = (l[i] + d - 1) / d, R = r[i] / d;
if (L > R) return 0;
for (int j = 0; j <= M; j++) sum[j] = (f[j] + (j ? sum[j - 1] : 0)) % p;
for (int j = 0; j <= M; j++) {
f[j] = ((j - L >= 0 ? sum[j - L] : 0) + p - (j - R - 1 >= 0 ? sum[j - R - 1] : 0)) % p;
}
}
int ans = 0;
for (int i = 1; i <= M; i++) ans = (ans + f[i]) % p;
return ans;
}
int prm[maxn], cnt, mu[maxn];
bool tag[maxn];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> l[i] >> r[i];
mu[1] = 1;
for (int i = 2; i <= m; i++) {
if (!tag[i]) prm[++cnt] = i, mu[i] = p - 1;
for (int j = 1; j <= cnt && prm[j] * i <= m; j++) {
tag[i * prm[j]] = true;
if (i % prm[j]) mu[i * prm[j]] = (p - mu[i]) % p;
else break;
}
}
int ans = 0;
for (int i = 1; i <= m; i++) ans = (ans + 1ll * mu[i] * cal(i)) % p;
cout << ans;
}
最后在看H神的代码时发现另外的一个代码思路
const int mod = 998244353;
void add(int &u, int v) {
u += v;
if (u >= mod) u -= mod;
}
void sub(int &u, int v) {
u -= v;
if (u < 0) u += mod;
}
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n, m; cin >> n >> m;
vector<int> l(n), r(n);
vector<int> np(m + 1), ans(m + 1), p;
for (int i = 0; i < n; i += 1) cin >> l[i] >> r[i];
for (int i = 2; i <= m; i += 1) {
if (not np[i]) {
p.push_back(i);
for (int j = i * 2; j <= m; j += i) np[j] = 1;
}
}
for (int i = 1; i <= m; i += 1) {
vector<int> L(n), R(n);
int M = m / i, ok = 1;
for (int j = 0; j < n; j += 1) {
L[j] = (l[j] + i - 1) / i;
R[j] = r[j] / i;
if (L[j] > R[j]) ok = 0;
M -= L[j];
R[j] -= L[j];
}
if (not ok or M < 0) continue;
vector<int> dp(M + 1);
dp[0] = 1;
for (int j = 0; j < n; j += 1) {
for (int i = 1; i <= M; i += 1) add(dp[i], dp[i - 1]);
for (int i = M; i >= 0; i -= 1)
if (i > R[j]) sub(dp[i], dp[i - R[j] - 1]);
}
for (int x : dp) add(ans[i], x);
}
for (int x : p)
for (int i = 1; i * x <= m; i += 1)
sub(ans[i], ans[i * x]);
cout << ans[1];
}