补题链接:Here
A - box
输出
B - Various distances
按题意输出 3 种距离即可
#include <bits/stdc++.h>using namespace std;using ll = long long;int main() {ios_base::sync_with_stdio(false), cin.tie(0);int N;ll x;ll ans1 = 0, ans2 = 0, ans3 = 0;cin >> N;for (int i = 0; i < N; i++) {cin >> x;ans1 += abs(x);ans2 += x * x;ans3 = max(ans3, abs(x));}double ans2_ = sqrt(double(ans2));cout << ans1 << endl;cout << fixed << setprecision(20) << ans2_ << endl;cout << ans3 << endl;}
C - Cream puff
set 容器存因子,然后循环输出
#include <bits/stdc++.h>using namespace std;using ll = long long;int main() {ios_base::sync_with_stdio(false), cin.tie(0);ll x, y, a, b;cin >> x >> y >> a >> b;ll ans = 0;while ((a - 1) * x <= b && a * x < y && (double)a * x <= 2e18) {x *= a, ans++;}cout << ans + (y - 1 - x) / b << '\n';return 0;}
D - Takahashi Unevolved
题意:Iroha 在游戏中有一只宠物加 Takahashi,为了帮助 Takahashi 变得强力起来,需要将它送入训练场
- Kakomon Gym:
- AtCoder Gym:
但是 STR 不能超过 Y 的情况下求 EXP 的最大值
思路:最大化去第一种 Gym 的次数然后用 Y减去差值除 B 即可
#include <bits/stdc++.h>using namespace std;using ll = long long;int main() {ios_base::sync_with_stdio(false), cin.tie(0);ll x, y, a, b;cin >> x >> y >> a >> b;ll ans = 0;while ((a - 1) * x <= b && a * x < y && (double)a * x <= 2e18) {x *= a, ans++;}cout << ans + (y - 1 - x) / b << '\n';return 0;}
E - Traveling Salesman among Aerial Cities
https://blog.csdn.net/weixin_45750972/article/details/109144617
题意:给定边权的计算方法,求n nn个结点的最小曼哈顿回路花费。
思路:状压DP
令#card=math&code=dp%28i%2Cj%29)为状态
下从起点出发到
的最小花费,这里的状态
指从起点要经过的城市
最后答案即为:%E2%88%921%5D%5B0%5D#card=math&code=dp%5B%281%3C%3Cn%29%E2%88%921%5D%5B0%5D),假设起点为
。
状态方程:%5D%5Bk%5D%2Bdis(k%2Cj))%2C(i%5C%26(1%3C%3Cj)%3E0)#card=math&code=dp%5Bi%5D%5Bj%5D%3Dmin%28dp%5Bi%5D%5Bj%5D%2Cdp%5Bi%E2%88%92%281%3C%3Cj%29%5D%5Bk%5D%2Bdis%28k%2Cj%29%29%2C%28i%5C%26%281%3C%3Cj%29%3E0%29)
#include <bits/stdc++.h>using namespace std;using ll = long long;const int N = 17, M = (1 << 17) + 1;int n, x[N], y[N], z[N];ll dp[M][N];ll d(int a, int b) {return abs(x[a] - x[b]) + abs(y[a] - y[b]) + max(0, z[b] - z[a]);}int main() {ios_base::sync_with_stdio(false), cin.tie(0);cin >> n;for (int i = 0; i < n; ++i) cin >> x[i] >> y[i] >> z[i];memset(dp, 0x3f, sizeof(dp));dp[0][0] = 0;for (int i = 1; i < (1 << n); ++i) {for (int j = 0; j < n; ++j)if ((i >> j) & 1)for (int k = 0; k < n; ++k)dp[i][j] = min(dp[i][j], dp[i - (1 << j)][k] + d(k, j));}cout << dp[(1 << n) - 1][0] << '\n';return 0;}
F - Unbranched
这里做的有点懵,贴一下代码
这里使用了 atcoder/all 头文件,添加方法:Click Here
#include <atcoder/all>using mint = atcoder::modint1000000007;int N, M, L;mint f(int L) {mint dp[303][303];dp[0][0] = 1;for (int i = 0; i < N; i++)for (int j = 0; j <= i; j++) {mint T = dp[i][j];for (int k = 1; i + k <= N && j + k - 1 <= M && k <= L; k++) {if (k > 1) dp[i + k][j + k] += T;if (k == 2) T *= 500000004;dp[i + k][j + k - 1] += T * k;T *= N - i - k;}}return dp[N][M];}int main() {std::cin >> N >> M >> L;std::cout << (f(L) - f(L - 1)).val();return 0;}
