- A. Middle of the Contest">A. Middle of the Contest
- B. Preparation for International Women’s Day">B. Preparation for International Women’s Day
- C. Balanced Team">C. Balanced Team
- D. Zero Quantity Maximization">D. Zero Quantity Maximization
- E. K Balanced Teams">E. K Balanced Teams
- F1. Spanning Tree with Maximum Degree">F1. Spanning Tree with Maximum Degree
- F2. Spanning Tree with One Fixed Degree">F2. Spanning Tree with One Fixed Degree
复健,时间有限题解比较简陋
A. Middle of the Contest
将小时转成分钟,得到起止时间在一天中的分钟数,取平均值即可,复杂度O(1)。平均值转换会时间的时候注意前导0。
void solve(int x) {x /= 2;printf("%02d:%02d\n", x / 60, x % 60);}int main() {// freopen("in.txt", "r", stdin);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)cpp;int h1, h2, m1, m2;char c;cin >> h1 >> c >> m1;cin >> h2 >> c >> m2;solve(h1 * 60 + m1 + h2 * 60 + m2);}
B. Preparation for International Women’s Day
要加起来能被k整除, 只需要看模k的余数即可。余数为i的与余数为k-i的互补可以被k整除,通过计数看有多少对能互补。需要注意的是,为余数为0和k/2(k为偶数)时,只能同余数的互补,此时计数是偶数个时都能配对,奇数个时能配对的数量是计数 - 1。复杂度O(n + k)。
int main() {// freopen("in.txt", "r", stdin);ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int n, k, x, cnt = 0;cin >> n >> k;int d[k] = {0};for (int i = 0; i < n; ++i) cin >> x, d[x % k]++;for (int i = 0; i < (k + 1) / 2; ++i) {if (i == 0)cnt += d[i] / 2;else {cnt += min(d[i], d[k - i]);}}if (k % 2 == 0) cnt += d[k / 2] / 2;cout << cnt * 2;}
C. Balanced Team
单调队列,从小到大添加元素,保证队首和队尾差不超过5,超过了则出队,否则用当前队列大小更新最优解。如果元素x < y则x一定比y先入队,而且能与x共存的最小值sx和能与y共存的最小值sy有sx <= sy。使用单调队列,每次入队后进行出队操作,出队完成后队首就是能与入队元素共存的最小值,队列内的元素就是以入队元素为最大值时所有能存在的元素。复杂度O(n)
int main() {// freopen("in.txt", "r", stdin);ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int n;cin >> n;ll a[n + 1];for (int i = 1; i <= n; ++i) cin >> a[i];sort(a + 1, a + 1 + n);int cnt = 0, l = 1, r = 2;while (l <= r && r <= n) {if (a[r] - a[l] > 5) cnt = max(cnt, r - l), l++;r++;}cnt = max(cnt, r - l);cout << cnt;}
D. Zero Quantity Maximization
d * a[i] + b[i] = 0可得d = - b[i] / a[i],统计每种d取值的个数,取最大即可。对于a[i]为0的情况需要特殊讨论,如果b[i]也为0则此时d可以取任意值;否则,d的取值为0。另外,为了避免浮点误差,不能直接统计d,而是要统计<a, b>这个配对;同时,为了归一化,需要将a与b同时除以他们的最大公约数,并保证a是正数。复杂度O(nlog(n)),log是因为用了map来计数。
// Author : RioTian// Time : 20/11/10#include <bits/stdc++.h>using namespace std;typedef long long ll;const int N = 1e5 + 10;int main() {// freopen("in.txt", "r", stdin);ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int n;cin >> n;ll a[n + 1], b[n + 1];for (int i = 0; i < n; ++i) {cin >> a[i];}for (int i = 0; i < n; ++i) {cin >> b[i];}int zeroBCnt = 0, zeroBothCnt = 0;map<pair<int, int>, int> hash;for (int i = 0; i < n; ++i) {if (a[i] == 0) {if (b[i] == 0) ++zeroBothCnt;continue;}if (b[i] == 0) {++zeroBCnt;}int divisor = gcd(abs(a[i]), abs(b[i]));a[i] /= divisor;b[i] /= divisor;if (a[i] < 0) {a[i] = -a[i];b[i] = -b[i];}if (hash[make_pair(a[i], b[i])])++hash[make_pair(a[i], b[i])];elsehash[make_pair(a[i], b[i])] = 1;}int ans = zeroBCnt;for (auto item : hash) {if (item.second > ans) ans = item.second;}cout << ans + zeroBothCnt << endl;return 0;}
E. K Balanced Teams
与C题思路类似,先得到取每个元素为最大值,能共存的元素有哪些(排过序的数组保留首位指针即可),比如位置为i的元素最小可共存元素的位置是maxStart[i],这样数组里面maxStart[i]到i都是可共存元素。问题就转成如何在里面选k个,让元素尽量多,这样dp即可。dp[i][j]表示前i个元素选j队的最优值,则如果选maxStart[i]到i,最优值为dp[maxStart[i] - 1], j - 1] + i - maxStart[i] + 1;如果不选,最优值为dp[i - 1][j];两者取最优得到状态转移方程。另外由于j只会从j - 1转移,因此可以用滚动数组节约内存。复杂度O(nk)。
// Author : RioTian// Time : 20/11/10#include <bits/stdc++.h>using namespace std;const int N = 5e3 + 10;int a[N], maxStart[N], dp[N][2];int n, k;int main() {cin >> n >> k;for (int i = 0; i < n; ++i) cin >> a[i];sort(a, a + n);int l = 0, r = 0;while (r < n) {if (a[r] - a[l] <= 5) {maxStart[r] = l, ++r;continue;}++l;}for (int i = 1; i <= k; ++i) {for (int j = 0; j < n; ++j) {if (maxStart[j]) {dp[j][i % 2] =max(dp[j - 1][i % 2],dp[maxStart[j] - 1][(i - 1) % 2] + j - maxStart[j] + 1);continue;}dp[j][i % 2] = max(dp[j - 1][i % 2], j - maxStart[j] + 1);}}cout << dp[n - 1][k % 2] << endl;return 0;}
F1. Spanning Tree with Maximum Degree
直接找到度最大的节点bfs即可,复杂度O(n + m)。
#include <iostream>#include <queue>#include <vector>using namespace std;vector<int> node[200010];bool visited[200010];void bfs(int start) {queue<int> qu;qu.push(start);visited[start] = true;while (qu.size()) {int cur = qu.front();qu.pop();for (auto next : node[cur]) {if (visited[next]) continue;visited[next] = true;qu.push(next);cout << cur + 1 << ' ' << next + 1 << endl;}}}int main() {int n, m, x, y, tmp, maxCnt = 0, maxNode = -1;cin >> n >> m;for (int i = 0; i < m; ++i) {cin >> x >> y;--x;--y;node[x].push_back(y);node[y].push_back(x);tmp = node[x].size() > node[y].size() ? x : y;if (node[tmp].size() > maxCnt) {maxCnt = node[tmp].size();maxNode = tmp;}}bfs(maxNode);return 0;}
F2. Spanning Tree with One Fixed Degree
如果从1的一个分支出发能从另一个分支回到1,则这些分支划分为同一组,dfs即可得到这些分组。如果一组里面所有分支都被去掉了,则这组里面的节点就无法出现在树里面,因此至少要保留一个。dfs得到有多少这样的组,每组里面取一个分支,剩下还可以取则任意取。这些分支作为bfs的第一步,继续搜下去,按搜索顺序输出即可。非法的情况有:dfs时存在节点没有走到;需要的度数比组数少(此时至少有一组所有分支都被去掉);需要的度数比1链接的分支多。复杂度O(n + m)。
#include <cstring>#include <iostream>#include <queue>#include <vector>using namespace std;bool visited[200010];vector<int> node[200010];vector<int> group[200010];queue<int> qu;int n, m, d, g;void dfs(int cur, int parent) {visited[cur] = true;for (auto next : node[cur]) {if (visited[next]) {if (parent == -1) group[g - 1].push_back(next);continue;}if (parent == -1) {group[g++].push_back(next);}dfs(next, cur);}}void bfs() {while (qu.size()) {int cur = qu.front();qu.pop();for (auto next : node[cur]) {if (!visited[next]) {visited[next] = true;cout << cur + 1 << ' ' << next + 1 << endl;qu.push(next);}}}}int main() {int x, y;cin >> n >> m >> d;for (int i = 0; i < m; ++i) {cin >> x >> y;--x;--y;node[x].push_back(y);node[y].push_back(x);}memset(visited, 0, sizeof(visited));dfs(0, -1);for (int i = 0; i < n; ++i) {if (!visited[i]) {cout << "NO" << endl;return 0;}}if (g > d || node[0].size() < d) {cout << "NO" << endl;return 0;}cout << "YES" << endl;memset(visited, 0, sizeof(visited));visited[0] = true;d -= g;for (int i = 0; i < g; ++i) {cout << '1' << ' ' << group[i][0] + 1 << endl;visited[group[i][0]] = true;qu.push(group[i][0]);for (int j = 1; d && j < group[i].size(); ++j) {cout << '1' << ' ' << group[i][j] + 1 << endl;visited[group[i][j]] = true;qu.push(group[i][j]);--d;}}bfs();return 0;}
