原址

Master of Engineering

The Department of Electrical Engineering and Computer Science permits qualified MIT undergraduate students to apply for one of three Master of Engineering (MEng) programs. These programs consist of an additional, fifth year of study beyond one of the Bachelor of Science programs offered by the department.
Recipients of a Master of Engineering degree normally receive a Bachelor of Science degree simultaneously. No thesis is explicitly required for the Bachelor of Science degree. However, every program must include a major project experience at an advanced level, culminating in written and oral reports.
The Master of Engineering degree also requires completion of 24 units of thesis credit under 6.THM Master of Engineering Program Thesis. While a student may register for more than this number of thesis units, only 24 units count toward the degree requirement. Adjustments to the department requirements are made on an individual basis when it is clear that a student would be better served by a variation in the requirements because of their strong prior background.
Programs leading to the five-year Master of Engineering degree or to the four-year Bachelor of Science degrees can easily be arranged to be identical through the junior year. At the end of the junior year, students with strong academic records may apply to continue through the five-year master’s program. Admission to the Master of Engineering program is open only to undergraduate students who have completed their junior year in the Department of Electrical Engineering and Computer Science at MIT. Students with other preparation seeking a master’s level experience in EECS at MIT should see the Master of Science program described later in this section.
A student in the Master of Engineering program must be registered as a graduate student for at least one regular (non-summer) term. To remain in the program and to receive the Master of Engineering degree, students will be expected to maintain strong academic records.
Four MEng programs are available:

  • The Master of Engineering in Electrical Engineering and Computer Science (6-P) program is intended to provide the depth of knowledge and the skills needed for advanced graduate study and for professional work, as well as the breadth and perspective essential for engineering leadership in an increasingly complex technological world.
  • The 6-A Master of Engineering Thesis Program with Industry combines the Master of Engineering academic program with periods of industrial practice at affiliated companies. An undergraduate wishing to pursue this degree should initially register for one of the department’s three bachelor’s programs.
  • The Department of Electrical Engineering and Computer Science jointly offers a Master of Engineering in Computer Science and Molecular Biology (6-7P) with the Department of Biology (Course 7). This program is modeled on the 6-P program, but provides additional depth in computational biology through coursework and a substantial thesis.
  • The Department of Electrical Engineering and Computer Science jointly offers a Master of Engineering in Computation and Cognition (6-9P) with the Department of Brain and Cognitive Sciences (Course 9). This program builds on the Bachelor of Science in Computation and Cognition, providing additional depth in the subject areas through advanced coursework and a substantial thesis.

    Master of Engineering in Electrical Engineering and Computer Science (Course 6-P)

    Through a seamless, five-year course of study, the Master of Engineering in Electrical Engineering and Computer Science (6-P) program leads directly to the simultaneous awarding of the Master of Engineering and one of the three bachelor’s degrees offered by the department. The 6-P program is intended to provide the skills and depth of knowledge in a selected field of concentration needed for advanced graduate study and for professional work, as well as the breadth and perspective essential for engineering leadership in an increasingly complex technological world. The student selects 42 units from a list of subjects approved by the Graduate Office; these subjects, considered along with the two advanced undergraduate subjects from the bachelor’s program, must include at least 36 units in an area of concentration. A further 24 units of electives are chosen from a restricted departmental list of mathematics, science, and engineering subjects.

    Master of Engineering Thesis Program with Industry (Course 6-A)

    The 6-A Master of Engineering Thesis Program with Industry enables students to combine classroom studies with practical experience in industry through a series of supervised work assignments at one of the companies or laboratories participating in the program, culminating with a Master of Engineering thesis performed at a 6-A member company. Collectively, the participating companies provide a wide spectrum of assignments in the various fields of electrical engineering and computer science, as well as an exposure to the kinds of activities in which engineers are currently engaged. Since a continuing liaison between the companies and faculty of the department is maintained, students receive assignments of progressive responsibility and sophistication that are usually more professionally rewarding than typical summer jobs.
    The 6-A program is primarily designed to work in conjunction with the department’s five-year Master of Engineering degree program. Internship students generally complete three assignments with their cooperating company—usually two summers and one regular term. While on 6-A assignment, students receive pay from the participating company as well as academic credit for their work. During their graduate year, 6-A students generally receive a 6-A fellowship or a research or teaching assistantship to help pay for the graduate year.
    The department conducts a fall recruitment during which juniors who wish to work toward an industry-based Master of Engineering thesis may apply for admission to the 6-A program. Acceptance of a student into the program cannot be guaranteed, as openings are limited. At the end of their junior year, most 6-A students can apply for admission to 6-PA, which is the 6-A version of the department’s five-year 6-P Master of Engineering degree program. 6-PA students do their Master of Engineering thesis at their participating company’s facilities. They can apply up to 24 units of work-assignment credit toward their Master of Engineering degree. The first 6-A assignment may be used for the advanced undergraduate project that is required for award of a bachelor’s degree, by including a written report and obtaining approval by a faculty member.
    At the conclusion of their program, 6-A students are not obliged to accept employment with the company, nor is the company obliged to offer such employment.
    Additional information about the program is available at the 6-A Office, Room 38-409E, 617-253-4644.

    Master of Engineering in Computer Science and Molecular Biology (Course 6-7P)

    The Departments of Biology and Electrical Engineering and Computer Science jointly offer a Master of Engineering in Computer Science and Molecular Biology (6-7P). A detailed description of the program requirements may be found under the section on Interdisciplinary Programs.

    Master of Engineering in Computation and Cognition (Course 6-9P)

    The Departments of Brain and Cognitive Sciences and Electrical Engineering and Computer Science jointly offer a Master of Engineering in Computation and Cognition (6-9P). A detailed description of the program requirements may be found under the section on Interdisciplinary Programs.

    Predoctoral and Doctoral Programs

    The programs of education offered by the Department of Electrical Engineering and Computer Science at the doctoral and predoctoral level have three aspects. First, a variety of classroom subjects in physics, mathematics, and fundamental fields of electrical engineering and computer science is provided to permit students to develop strong scientific backgrounds. Second, more specialized classroom and laboratory subjects and a wide variety of colloquia and seminars introduce the student to the problems of current interest in many fields of research, and to the techniques that may be useful in attacking them. Third, each student conducts research under the direct supervision of a member of the faculty and reports the results in a thesis.
    Three advanced degree programs are offered in addition to the Master of Engineering program described above. A well-prepared student with a bachelor’s degree in an appropriate field from some school other than MIT (or from another department at MIT) normally requires about one and one-half to two years to complete the formal studies and the required thesis research in the Master of Science degree program. (Students who have been undergraduates in Electrical Engineering and Computer Science at MIT and who seek opportunities for further study must complete the Master of Engineering rather than the Master of Science degree program.) With an additional year of study and research beyond the master’s level, a student in the doctoral or predoctoral program can complete the requirements for the degree of Electrical Engineer or Engineer in Computer Science. The doctoral program usually takes about four to five years beyond the master’s level.
    There are no fixed programs of study for these doctoral and predoctoral degrees. Each student plans a program in consultation with a faculty advisor. As the program moves toward thesis research, it usually centers in one of a number of areas, each characterized by an active research program. Areas of specialization in the department that have active research programs and related graduate subjects include communications, control, signal processing, and optimization; computer science; artificial intelligence, robotics, computer vision, and graphics; electronics, computers, systems, and networks; electromagnetics and electrodynamics; optics, photonics, and quantum electronics; energy conversion devices and systems; power engineering and power electronics; materials and devices; VLSI system design and technology; nanoelectronics; bioelectrical engineering; and computational biology.
    In addition to graduate subjects in electrical engineering and computer science, many students find it profitable to study subjects in other departments such as Biology, Brain and Cognitive Sciences, Economics, Linguistics and Philosophy, Management, Mathematics, and Physics.
    The informal seminar is an important mechanism for bringing together members of the various research groups. Numerous seminars meet every week. In these, graduate students, faculty, and visitors report their research in an atmosphere of free discussion and criticism. These open seminars are excellent places to learn about the various research activities in the department.
    Research activities in electrical engineering and computer science are carried on by students and faculty in laboratories of extraordinary range and strength, including the Laboratory for Information and Decision Systems, Research Laboratory of Electronics, Computer Science and Artificial Intelligence Laboratory, Laboratory for Energy and the Environment (see MIT Energy Initiative), Kavli Institute for Astrophysics and Space Research, Lincoln Laboratory, Materials Research Laboratory, MIT Media Lab, Francis Bitter Magnet Laboratory, Operations Research Center, Plasma Science and Fusion Center, and the Microsystems Technology Laboratories. Descriptions of many of these laboratories may be found under the section on Research and Study.
    Because the backgrounds of applicants to the department’s doctoral and predoctoral programs are extremely varied, both as to field (electrical engineering, computer science, physics, mathematics, biomedical engineering, etc.) and as to level of previous degree (bachelor’s or master’s), no specific admissions requirements are listed. All applicants for any of these advanced programs will be evaluated in terms of their potential for successful completion of the department’s doctoral program. Superior achievement in relevant technical fields is considered particularly important.

    Master of Science in Electrical Engineering and Computer Science

    The general requirements for the degree of Master of Science are listed under Graduate Education. The department requires that the 66-unit program consist of at least four subjects from a list of approved subjects by the Graduate Office which must include a minimum of 42 units of advanced graduate subjects. In addition, a 24-unit thesis is required beyond the 66 units. Students working full-time for the Master of Science degree may take as many as four classroom subjects per term. The subjects are wholly elective and are not restricted to those given by the department. The program of study must be well balanced, emphasizing one or more of the theoretical or experimental aspects of electrical engineering or computer science.

    Electrical Engineer or Engineer in Computer Science

    The general requirements for an engineer’s degree are given under the section on Graduate Education. These degrees are open to those able students in the doctoral or predoctoral program who seek more extensive training and research experiences than are possible within the master’s program. Admission to the engineer’s program depends upon a superior academic record and outstanding progress on a thesis. The course of studies consists of at least 162 units, 90 of which must be from a list of subjects approved by the Graduate Office, and the thesis requirements for a master’s degree.

    Doctor of Philosophy or Doctor of Science

    The general requirements for the degree of Doctor of Philosophy or Doctor of Science are given under the section on Graduate Education. Doctoral candidates are expected to participate fully in the educational program of the department and to perform thesis work that is a significant contribution to knowledge. As preparation, MIT students in the Master of Engineering in Electrical Engineering and Computer Science program will be expected to complete that program. Students who have received a bachelor’s degree outside the department, but who have not completed a master’s degree program, will normally be expected to complete the requirements for the Master of Science degree described earlier, including a thesis. Students who have completed a master’s degree elsewhere without a significant research component will be required to register for and carry out a research accomplishment equivalent to a master’s thesis before being allowed to proceed in the doctoral program.
    Details of how students in the department fulfill the requirements for the doctoral program are spelled out in an internal memorandum. The department does not have a foreign language requirement, but does require an approved minor program.
    Graduate students enrolled in the department may participate in the research centers described in the Research and Study section, such as the Operations Research Center.

    Financial Support

    Master of Engineering Degree Students

    Students in the fifth year of study toward the Master of Engineering degree are commonly supported by a graduate teaching or research assistantship. In the 6-A Master of Engineering Thesis Program with Industry, students are supported by paid company internships. Students supported by full-time research or teaching assistantships may register for no more than two regular classes totaling at most 27 units. They receive additional academic units for their participation in the teaching or research program. Support through an assistantship may extend the period required to complete the Master of Engineering program by an additional term or two. Support is granted competitively to graduate students and may not be available for all of those admitted to the Master of Engineering program. The MEng degree is normally completed by students taking a full load of regular subjects in two graduate terms. Students receiving assistantships commonly require a third term and may petition to continue for a fourth graduate term.

    Master of Science, Engineer, and Doctoral Degree Students

    Studies toward an advanced degree can be supported by personal funds, by an award such as the National Science Foundation Fellowship (which the student brings to MIT), by a fellowship or traineeship awarded by MIT, or by a graduate assistantship. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Full-time assistants may register for no more than two scheduled classroom or laboratory subjects during the term, but may receive additional academic credit for their participation in the teaching or research program.

    Inquiries

    Additional information concerning graduate academic and research programs, admissions, financial aid, and assistantships may be obtained from the Electrical Engineering and Computer Science Graduate Office, Room 38-444, 617-253-4605, or visit the EECS website.

    Interdisciplinary Programs

    Computational Science and Engineering

    The Master of Science in Computational Science and Engineering (CSE SM) is an interdisciplinary program for students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CSE SM in conjunction with a department-based master’s or PhD program. For more information, see the full program description under Interdisciplinary Graduate Programs.

    Joint Program with the Woods Hole Oceanographic Institution

    The Joint Program with the Woods Hole Oceanographic Institution (WHOI) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs.

    Leaders for Global Operations

    The 24-month Leaders for Global Operations (LGO) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni lead strategic initiatives in high-tech, operations, and manufacturing companies.

    System Design and Management

    The System Design and Management (SDM) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

    Technology and Policy

    The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, quantitative methods, and social science. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under the Institute for Data, Systems, and Society.