对于实时的流式处理系统来说,我们需要关注数据输入、计算和输出的及时性,所以处理延迟是一个比较重要的监控指标,特别是在数据量大或者软硬件条件不佳的环境下。Flink早在FLINK-3660就为用户提供了开箱即用的链路延迟监控功能,只需要配置好metrics.latency.interval,参数,再观察TaskManagerJobMetricGroup/operator_id/operator_subtask_index/latency,这个metric即可。本文简单walk一下源码,看看它是如何实现的,并且简要说明注意事项。

LatencyMarker的产生

与通过水印来标记事件时间的推进进度相似,Flink也用一种特殊的流元素(StreamElement)作为延迟的标记,称为LatencyMarker。
image.png
LatencyMarker的数据结构甚简单,只有3个field,即它被创建时携带的时间戳、算子ID和算子并发实例(sub-task)的ID。

  1. private final long markedTime;
  2. private final OperatorID operatorId;
  3. private final int subtaskIndex;

LatencyMarker和水印不同,不需要通过用户抽取产生,而是在Source端自动按照metrics.latency.interval参数指定的周期生成。StreamSource专门实现了一个内部类LatencyMarksEmitter用来发射LatencyMarker,而它又借用了负责协调处理时间的服务ProcessingTimeService,如下代码所示。

  1. LatencyMarksEmitter<OUT> latencyEmitter = null;
  2. if (latencyTrackingInterval > 0) {
  3. latencyEmitter = new LatencyMarksEmitter<>(
  4. getProcessingTimeService(),
  5. collector,
  6. latencyTrackingInterval,
  7. this.getOperatorID(),
  8. getRuntimeContext().getIndexOfThisSubtask());
  9. }
  10. private static class LatencyMarksEmitter<OUT> {
  11. private final ScheduledFuture<?> latencyMarkTimer;
  12. public LatencyMarksEmitter(
  13. final ProcessingTimeService processingTimeService,
  14. final Output<StreamRecord<OUT>> output,
  15. long latencyTrackingInterval,
  16. final OperatorID operatorId,
  17. final int subtaskIndex) {
  18. latencyMarkTimer = processingTimeService.scheduleAtFixedRate(
  19. new ProcessingTimeCallback() {
  20. @Override
  21. public void onProcessingTime(long timestamp) throws Exception {
  22. try {
  23. // ProcessingTimeService callbacks are executed under the checkpointing lock
  24. output.emitLatencyMarker(new LatencyMarker(processingTimeService.getCurrentProcessingTime(), operatorId, subtaskIndex));
  25. } catch (Throwable t) {
  26. // we catch the Throwables here so that we don't trigger the processing
  27. // timer services async exception handler
  28. LOG.warn("Error while emitting latency marker.", t);
  29. }
  30. }
  31. },
  32. 0L,
  33. latencyTrackingInterval);
  34. }
  35. public void close() {
  36. latencyMarkTimer.cancel(true);
  37. }
  38. }

通过调用Output.emitLatencyMarker()方法,LatencyMarker就会随着数据流一起传递到下游了。

LatencyMarker的粒度

AbstractStreamOperator是所有Flink Streaming算子的基类,在它的初始化方法setup()中,会先创建用于延迟统计的LatencyStats实例。

  1. final String configuredGranularity = taskManagerConfig.getString(MetricOptions.LATENCY_SOURCE_GRANULARITY);
  2. LatencyStats.Granularity granularity;
  3. try {
  4. granularity = LatencyStats.Granularity.valueOf(configuredGranularity.toUpperCase(Locale.ROOT));
  5. } catch (IllegalArgumentException iae) {
  6. granularity = LatencyStats.Granularity.OPERATOR;
  7. LOG.warn(
  8. "Configured value {} option for {} is invalid. Defaulting to {}.",
  9. configuredGranularity,
  10. MetricOptions.LATENCY_SOURCE_GRANULARITY.key(),
  11. granularity);
  12. }
  13. TaskManagerJobMetricGroup jobMetricGroup = this.metrics.parent().parent();
  14. this.latencyStats = new LatencyStats(jobMetricGroup.addGroup("latency"),
  15. historySize,
  16. container.getIndexInSubtaskGroup(),
  17. getOperatorID(),
  18. granularity);

在创建LatencyStats之前,先要根据metrics.latency.granularity配置项来确定延迟监控的粒度,分为以下3档:

  • single:每个算子单独统计延迟;
  • operator(默认值):每个下游算子都统计自己与Source算子之间的延迟;
  • subtask:每个下游算子的sub-task都统计自己与Source算子的sub-task之间的延迟。

一般情况下采用默认的operator粒度即可,这样在Sink端观察到的latency metric就是我们最想要的全链路(端到端)延迟,以下也是以该粒度讲解。subtask粒度太细,会增大所有并行度的负担,不建议使用。

LatencyMarker的流转与计量

AbstractStreamOperator分别提供了用于单输入流算子OneInputStreamOperator、双输入流算子TwoInputStreamOperator的LatencyMarker处理方法。

  1. // ------- One input stream
  2. public void processLatencyMarker(LatencyMarker latencyMarker) throws Exception {
  3. reportOrForwardLatencyMarker(latencyMarker);
  4. }
  5. // ------- Two input stream
  6. public void processLatencyMarker1(LatencyMarker latencyMarker) throws Exception {
  7. reportOrForwardLatencyMarker(latencyMarker);
  8. }
  9. public void processLatencyMarker2(LatencyMarker latencyMarker) throws Exception {
  10. reportOrForwardLatencyMarker(latencyMarker);
  11. }
  12. protected void reportOrForwardLatencyMarker(LatencyMarker marker) {
  13. // all operators are tracking latencies
  14. this.latencyStats.reportLatency(marker);
  15. // everything except sinks forwards latency markers
  16. this.output.emitLatencyMarker(marker);
  17. }

这些方法都会做两件事,一是计算延时并报告给LatencyStats,二是继续将LatencyMarker发射到下游。不妨来看看RecordWriterOutput.emitLatencyMarker()方法的具体实现。

  1. @Override
  2. public void emitLatencyMarker(LatencyMarker latencyMarker) {
  3. serializationDelegate.setInstance(latencyMarker);
  4. try {
  5. recordWriter.randomEmit(serializationDelegate);
  6. }
  7. catch (Exception e) {
  8. throw new RuntimeException(e.getMessage(), e);
  9. }
  10. }
  11. /**
  12. * This is used to send LatencyMarks to a random target channel.
  13. */
  14. public void randomEmit(T record) throws IOException, InterruptedException {
  15. emit(record, rng.nextInt(numberOfChannels));
  16. }

可见是从该算子所有的输出channel中随机选择一条来发射LatencyMarker,这样在度量算子级别延迟的基础上不会造成LatencyMarker泛滥,同时也不会受到并行度调整(重新分区)的影响。

注意StreamSink的reportOrForwardLatencyMarker()方法不会再发射LatencyMarker(因为已经处理完了),只会更新延迟。

  1. @Override
  2. protected void reportOrForwardLatencyMarker(LatencyMarker marker) {
  3. // all operators are tracking latencies
  4. this.latencyStats.reportLatency(marker);
  5. // sinks don't forward latency markers
  6. }

LatencyStats中的延迟最终会转化为直方图表示,通过直方图就可以统计出延时的最大值、最小值、均值、分位值(quantile)等指标。以下是reportLatency()方法的源码。

  1. public void reportLatency(LatencyMarker marker) {
  2. final String uniqueName = granularity.createUniqueHistogramName(marker, operatorId, subtaskIndex);
  3. DescriptiveStatisticsHistogram latencyHistogram = this.latencyStats.get(uniqueName);
  4. if (latencyHistogram == null) {
  5. latencyHistogram = new DescriptiveStatisticsHistogram(this.historySize);
  6. this.latencyStats.put(uniqueName, latencyHistogram);
  7. granularity.createSourceMetricGroups(metricGroup, marker, operatorId, subtaskIndex)
  8. .addGroup("operator_id", String.valueOf(operatorId))
  9. .addGroup("operator_subtask_index", String.valueOf(subtaskIndex))
  10. .histogram("latency", latencyHistogram);
  11. }
  12. long now = System.currentTimeMillis();
  13. latencyHistogram.update(now - marker.getMarkedTime());
  14. }

可见,延迟是由当前时间戳减去LatencyMarker携带的时间戳得到的,所以在Sink端统计到的就是全链路延迟了。

注意事项

由以上分析可知,LatencyMarker是不会像Watermark一样参与到数据流的用户逻辑中的,而是直接被各算子转发并统计。这如何能得到真正的延时呢?如果由于网络不畅、数据流量太大等原因造成了反压(back pressure,之后再提),那么LatencyMarker的流转就会被阻碍,传递到下游的时间差就会增加,所以还是能够近似估算出整体的延时的。为了让它尽量精确,有两点特别需要注意:

  • ProcessingTimeService产生时间戳最终是靠System.currentTimeMillis()方法,所以必须保证Flink集群内所有节点的时区、时间是同步的,可以用ntp等工具来配置。
  • metrics.latency.interval的时间间隔宜大不宜小,在我们的实践中一般配置成30000(30秒)左右。一是因为延迟监控的频率可以不用太频繁,二是因为LatencyMarker的处理也要消耗时间,只有在LatencyMarker的耗时远小于正常StreamRecord的耗时时,metric反映出的数据才贴近实际情况,所以LatencyMarker的密度不能太大。