我们知道,一个 TCP 连接需要经过三次握手进入数据传输阶段,最后来到连接关闭阶段。在最后的连接关闭阶段,我们需要重点关注的是“半连接”状态。
- 在绝大数情况下,TCP 连接都是先关闭一个方向,此时另外一个方向还是可以正常进行数据传输。
close 函数
int close(int sockfd)
- 若成功则为 0,若出错则为 -1。
- 这个函数会对套接字引用计数减一,一旦发现套接字引用计数到 0,就会对套接字进行彻底释放,并且会关闭 TCP 两个方向的数据流。
close 函数具体是如何关闭两个方向的数据流呢?
- 在输入方向,系统内核会将该套接字设置为不可读,任何读操作都会返回异常。
- 在输出方向,系统内核尝试将发送缓冲区的数据发送给对端,并最后向对端发送一个 FIN 报文,接下来如果再对该套接字进行写操作会返回异常。
- 如果对端没有检测到套接字已关闭,还继续发送报文,就会收到一个 RST 报文
close 函数并不能帮助我们关闭连接的一个方向, 而 shutdown 函数可以.
shutdown 函数
int shutdown(int sockfd, int howto)
- 对已连接的套接字执行 shutdown 操作,若成功则为 0,若出错则为 -1。
howto 是这个函数的设置选项,它的设置有三个主要选项:
- SHUT_RD(0):关闭连接的“读”这个方向,对该套接字进行读操作直接返回 EOF。从数据角度来看,套接字上接收缓冲区已有的数据将被丢弃,如果再有新的数据流到达,会对数据进行 ACK,然后悄悄地丢弃。也就是说,对端还是会接收到 ACK,在这种情况下根本不知道数据已经被丢弃了。
- SHUT_WR(1):关闭连接的“写”这个方向,这就是常被称为”半关闭“的连接。此时,不管套接字引用计数的值是多少,都会直接关闭连接的写方向。套接字上发送缓冲区已有的数据将被立即发送出去,并发送一个 FIN 报文给对端。应用程序如果对该套接字进行写操作会报错。
- SHUT_RDWR(2):相当于 SHUT_RD 和 SHUT_WR 操作各一次,关闭套接字的读和写两个方向。
SHUT_RDWR(2) 与 close 的区别:
- 第一个差别:close 会关闭连接,并释放所有连接对应的资源,而 shutdown 并不会释放掉套接字和所有的资源。
- 第二个差别:close 存在引用计数的概念,并不一定导致该套接字不可用;shutdown 则不管引用计数,直接使得该套接字不可用,如果有别的进程企图使用该套接字,将会受到影响。
- 第三个差别:close 的引用计数导致不一定会发出 FIN 结束报文,而 shutdown 则总是会发出 FIN 结束报文,这在我们打算关闭连接通知对端的时候,是非常重要的。
体会 close 和 shutdown 的差别
使用 select 使得我们可以同时完成对连接套接字和标准输入两个 I/O 对象的处理。
客户端
# include "lib/common.h"
# define MAXLINE 4096
int main(int argc, char **argv) {
if (argc != 2) {
error(1, 0, "usage: graceclient <IPaddress>");
}
int socket_fd;
socket_fd = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in server_addr;
bzero(&server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_port = htons(SERV_PORT);
inet_pton(AF_INET, argv[1], &server_addr.sin_addr);
socklen_t server_len = sizeof(server_addr);
int connect_rt = connect(socket_fd, (struct sockaddr *) &server_addr, server_len);
if (connect_rt < 0) {
error(1, errno, "connect failed ");
}
char send_line[MAXLINE], recv_line[MAXLINE + 1];
int n;
fd_set readmask;
fd_set allreads;
FD_ZERO(&allreads);
FD_SET(0, &allreads);
FD_SET(socket_fd, &allreads);
for (;;) {
readmask = allreads;
int rc = select(socket_fd + 1, &readmask, NULL, NULL, NULL);
if (rc <= 0)
error(1, errno, "select failed");
if (FD_ISSET(socket_fd, &readmask)) {
n = read(socket_fd, recv_line, MAXLINE);
if (n < 0) {
error(1, errno, "read error");
} else if (n == 0) {
error(1, 0, "server terminated \n");
}
recv_line[n] = 0;
fputs(recv_line, stdout);
fputs("\n", stdout);
}
if (FD_ISSET(0, &readmask)) {
if (fgets(send_line, MAXLINE, stdin) != NULL) {
if (strncmp(send_line, "shutdown", 8) == 0) {
FD_CLR(0, &allreads);
if (shutdown(socket_fd, 1)) {
error(1, errno, "shutdown failed");
}
} else if (strncmp(send_line, "close", 5) == 0) {
FD_CLR(0, &allreads);
if (close(socket_fd)) {
error(1, errno, "close failed");
}
sleep(6);
exit(0);
} else {
int i = strlen(send_line);
if (send_line[i - 1] == '\n') {
send_line[i - 1] = 0;
}
printf("now sending %s\n", send_line);
size_t rt = write(socket_fd, send_line, strlen(send_line));
if (rt < 0) {
error(1, errno, "write failed ");
}
printf("send bytes: %zu \n", rt);
}
}
}
}
}
服务端
- SIGPIPE
#include "lib/common.h"
static int count;
static void sig_int(int signo) {
printf("\nreceived %d datagrams\n", count);
exit(0);
}
int main(int argc, char **argv) {
int listenfd;
listenfd = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in server_addr;
bzero(&server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
server_addr.sin_port = htons(SERV_PORT);
int rt1 = bind(listenfd, (struct sockaddr *) &server_addr, sizeof(server_addr));
if (rt1 < 0) {
error(1, errno, "bind failed ");
}
int rt2 = listen(listenfd, LISTENQ);
if (rt2 < 0) {
error(1, errno, "listen failed ");
}
signal(SIGINT, sig_int);
signal(SIGPIPE, SIG_IGN);
int connfd;
struct sockaddr_in client_addr;
socklen_t client_len = sizeof(client_addr);
if ((connfd = accept(listenfd, (struct sockaddr *) &client_addr, &client_len)) < 0) {
error(1, errno, "bind failed ");
}
char message[MAXLINE];
count = 0;
for (;;) {
int n = read(connfd, message, MAXLINE);
if (n < 0) {
error(1, errno, "error read");
} else if (n == 0) {
error(1, 0, "client closed \n");
}
message[n] = 0;
printf("received %d bytes: %s\n", n, message);
count++;
char send_line[MAXLINE];
sprintf(send_line, "Hi, %s", message);
sleep(5);
int write_nc = send(connfd, send_line, strlen(send_line), 0);
printf("send bytes: %zu \n", write_nc);
if (write_nc < 0) {
error(1, errno, "error write");
}
}
}
close
启动服务器,再启动客户端,依次在标准输入上输入 data1、data2 和 close,观察一段时间后我们看到:
$./graceclient 127.0.0.1
data1
now sending data1
send bytes:5
data2
now sending data2
send bytes:5
close
$./graceserver
received 5 bytes: data1
send bytes: 9
received 5 bytes: data2
send bytes: 9
client closed
客户端依次发送了 data1 和 data2,服务器端也正常接收到 data1 和 data2。在客户端 close 掉整个连接之后,服务器端接收到 SIGPIPE 信号,直接退出。客户端并没有收到服务器端的应答数据。
注意服务器使用了 sleep()
客户端调用 close 函数关闭了整个连接,当服务器端发送的“Hi, data1”分组到底时,客户端给回送一个 RST 分组;服务器端再次尝试发送“Hi, data2”第二个应答分组时,系统内核通知 SIGPIPE 信号。这是因为,在 RST 的套接字进行写操作,会直接触发 SIGPIPE 信号。
shutdown
依次在标准输入上输入 data1、data2 和 shutdown 函数,观察一段时间后我们看到:
$./graceclient 127.0.0.1
data1
now sending data1
send bytes:5
data2
now sending data2
send bytes:5
shutdown
Hi, data1
Hi,data2
server terminated
$./graceserver
received 5 bytes: data1
send bytes: 9
received 5 bytes: data2
send bytes: 9
client closed
客户端调用 shutdown 函数只是关闭连接的一个方向,服务器端到客户端的这个方向还可以继续进行数据的发送和接收,所以“Hi,data1”和“Hi,data2”都可以正常传送;当服务器端读到 EOF 时,立即向客户端发送了 FIN 报文,客户端在 read 函数中感知了 EOF,也进行了正常退出。
精选留言
卫江
问题一,为什么调用exit以后不需要调用close,shutdown?因为在调用exit之后进程会退出,而进程相关的所有的资源,文件,内存,信号等内核分配的资源都会被释放,在linux中,一切皆文件,本身socket就是一种文件类型,内核会为每一个打开的文件创建file结构并维护指向改结构的引用计数,每一个进程结构中都会维护本进程打开的文件数组,数组下标就是fd,内容就指向上面的file结构,close本身就可以用来操作所有的文件,做的事就是,删除本进程打开的文件数组中指定的fd项,并把指向的file结构中的引用计数减一,等引用计数为0的时候,就会调用内部包含的文件操作close,针对于socket,它内部的实现应该就是调用shutdown,只是参数是关闭读写端,从而比较粗暴的关闭连接。
第二个问题,信号的处理有三种,默认处理,忽略处理,自定义处理。默认处理就是采用系统自定义的操作,大部分信号的默认处理都是杀死进程,忽略处理就是当做什么都没有发生。
作者回复: 赞赞赞。