Flink包含8中分区策略,这8中分区策略(分区器)分别如下面所示,本文将从源码的角度一一解读每个分区器的实现方式。
- GlobalPartitioner
- ShufflePartitioner
- RebalancePartitioner
- RescalePartitioner
- BroadcastPartitioner
- ForwardPartitioner
- KeyGroupStreamPartitioner
- CustomPartitionerWrapper
继承关系图
接口
名称
ChannelSelector
实现
public interface ChannelSelector<T extends IOReadableWritable> {/*** 初始化channels数量,channel可以理解为下游Operator的某个实例(并行算子的某个subtask).*/void setup(int numberOfChannels);/***根据当前的record以及Channel总数,*决定应将record发送到下游哪个Channel。*不同的分区策略会实现不同的该方法。*/int selectChannel(T record);/***是否以广播的形式发送到下游所有的算子实例*/boolean isBroadcast();}
名称
StreamPartitioner
实现
public abstract class StreamPartitioner<T> implementsChannelSelector<SerializationDelegate<StreamRecord<T>>>, Serializable {private static final long serialVersionUID = 1L;protected int numberOfChannels;@Overridepublic void setup(int numberOfChannels) {this.numberOfChannels = numberOfChannels;}@Overridepublic boolean isBroadcast() {return false;}public abstract StreamPartitioner<T> copy();}
继承关系图

GlobalPartitioner
简介
该分区器会将所有的数据都发送到下游的某个算子实例(subtask id = 0)
源码解读
/*** 发送所有的数据到下游算子的第一个task(ID = 0)* @param <T>*/@Internalpublic class GlobalPartitioner<T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {//只返回0,即只发送给下游算子的第一个taskreturn 0;}@Overridepublic StreamPartitioner<T> copy() {return this;}@Overridepublic String toString() {return "GLOBAL";}}
图解

ShufflePartitioner
简介
随机选择一个下游算子实例进行发送
源码解读
/*** 随机的选择一个channel进行发送* @param <T>*/@Internalpublic class ShufflePartitioner<T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;private Random random = new Random();@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {//产生[0,numberOfChannels)伪随机数,随机发送到下游的某个taskreturn random.nextInt(numberOfChannels);}@Overridepublic StreamPartitioner<T> copy() {return new ShufflePartitioner<T>();}@Overridepublic String toString() {return "SHUFFLE";}}
图解

BroadcastPartitioner
简介
发送到下游所有的算子实例
源码解读
/*** 发送到所有的channel*/@Internalpublic class BroadcastPartitioner<T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;/*** Broadcast模式是直接发送到下游的所有task,所以不需要通过下面的方法选择发送的通道*/@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {throw new UnsupportedOperationException("Broadcast partitioner does not support select channels.");}@Overridepublic boolean isBroadcast() {return true;}@Overridepublic StreamPartitioner<T> copy() {return this;}@Overridepublic String toString() {return "BROADCAST";}}
图解

RebalancePartitioner
简介
通过循环的方式依次发送到下游的task
源码解读
/***通过循环的方式依次发送到下游的task* @param <T>*/@Internalpublic class RebalancePartitioner<T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;private int nextChannelToSendTo;@Overridepublic void setup(int numberOfChannels) {super.setup(numberOfChannels);//初始化channel的id,返回[0,numberOfChannels)的伪随机数nextChannelToSendTo = ThreadLocalRandom.current().nextInt(numberOfChannels);}@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {//循环依次发送到下游的task,比如:nextChannelToSendTo初始值为0,numberOfChannels(下游算子的实例个数,并行度)值为2//则第一次发送到ID = 1的task,第二次发送到ID = 0的task,第三次发送到ID = 1的task上...依次类推nextChannelToSendTo = (nextChannelToSendTo + 1) % numberOfChannels;return nextChannelToSendTo;}public StreamPartitioner<T> copy() {return this;}@Overridepublic String toString() {return "REBALANCE";}}
图解

RescalePartitioner
简介
基于上下游Operator的并行度,将记录以循环的方式输出到下游Operator的每个实例。
举例: 上游并行度是2,下游是4,则上游一个并行度以循环的方式将记录输出到下游的两个并行度上;上游另一个并行度以循环的方式将记录输出到下游另两个并行度上。
若上游并行度是4,下游并行度是2,则上游两个并行度将记录输出到下游一个并行度上;上游另两个并行度将记录输出到下游另一个并行度上。
源码解读
@Internalpublic class RescalePartitioner<T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;private int nextChannelToSendTo = -1;@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {if (++nextChannelToSendTo >= numberOfChannels) {nextChannelToSendTo = 0;}return nextChannelToSendTo;}public StreamPartitioner<T> copy() {return this;}@Overridepublic String toString() {return "RESCALE";}}
图解

尖叫提示
Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。ExecutionGraph:JobManager 根据 JobGraph 生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。
而StreamingJobGraphGenerator就是StreamGraph转换为JobGraph。在这个类中,把ForwardPartitioner和RescalePartitioner列为POINTWISE分配模式,其他的为ALL_TO_ALL分配模式。代码如下:
if (partitioner instanceof ForwardPartitioner || partitioner instanceof RescalePartitioner) {jobEdge = downStreamVertex.connectNewDataSetAsInput(headVertex,// 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的一个或者多个实例(subtask)DistributionPattern.POINTWISE,resultPartitionType);} else {jobEdge = downStreamVertex.connectNewDataSetAsInput(headVertex,// 上游算子(生产端)的实例(subtask)连接下游算子(消费端)的所有实例(subtask)DistributionPattern.ALL_TO_ALL,resultPartitionType);}
ForwardPartitioner
简介
发送到下游对应的第一个task,保证上下游算子并行度一致,即上有算子与下游算子是1:1的关系
源码解读
/*** 发送到下游对应的第一个task* @param <T>*/@Internalpublic class ForwardPartitioner<T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {return 0;}public StreamPartitioner<T> copy() {return this;}@Overridepublic String toString() {return "FORWARD";}}
图解

尖叫提示
在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitioner,对于ForwardPartitioner,必须保证上下游算子并行度一致,否则会抛出异常
//在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitionerif (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {partitioner = new ForwardPartitioner<Object>();} else if (partitioner == null) {partitioner = new RebalancePartitioner<Object>();}if (partitioner instanceof ForwardPartitioner) {//如果上下游的并行度不一致,会抛出异常if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {throw new UnsupportedOperationException("Forward partitioning does not allow " +"change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() +", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() +" You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");}}
KeyGroupStreamPartitioner
简介
根据key的分组索引选择发送到相对应的下游subtask
源码解读
org.apache.flink.streaming.runtime.partitioner.KeyGroupStreamPartitioner
/*** 根据key的分组索引选择发送到相对应的下游subtask* @param <T>* @param <K>*/@Internalpublic class KeyGroupStreamPartitioner<T, K> extends StreamPartitioner<T> implements ConfigurableStreamPartitioner {...@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {K key;try {key = keySelector.getKey(record.getInstance().getValue());} catch (Exception e) {throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e);}//调用KeyGroupRangeAssignment类的assignKeyToParallelOperator方法,代码如下所示return KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfChannels);}...}
org.apache.flink.runtime.state.KeyGroupRangeAssignment
public final class KeyGroupRangeAssignment {.../*** 根据key分配一个并行算子实例的索引,该索引即为该key要发送的下游算子实例的路由信息,* 即该key发送到哪一个task*/public static int assignKeyToParallelOperator(Object key, int maxParallelism, int parallelism) {Preconditions.checkNotNull(key, "Assigned key must not be null!");return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism));}/***根据key分配一个分组id(keyGroupId)*/public static int assignToKeyGroup(Object key, int maxParallelism) {Preconditions.checkNotNull(key, "Assigned key must not be null!");//获取key的hashcodereturn computeKeyGroupForKeyHash(key.hashCode(), maxParallelism);}/*** 根据key分配一个分组id(keyGroupId),*/public static int computeKeyGroupForKeyHash(int keyHash, int maxParallelism) {//与maxParallelism取余,获取keyGroupIdreturn MathUtils.murmurHash(keyHash) % maxParallelism;}//计算分区index,即该key group应该发送到下游的哪一个算子实例public static int computeOperatorIndexForKeyGroup(int maxParallelism, int parallelism, int keyGroupId) {return keyGroupId * parallelism / maxParallelism;}...
图解

CustomPartitionerWrapper
简介
通过Partitioner实例的partition方法(自定义的)将记录输出到下游。
public class CustomPartitionerWrapper<K, T> extends StreamPartitioner<T> {private static final long serialVersionUID = 1L;Partitioner<K> partitioner;KeySelector<T, K> keySelector;public CustomPartitionerWrapper(Partitioner<K> partitioner, KeySelector<T, K> keySelector) {this.partitioner = partitioner;this.keySelector = keySelector;}@Overridepublic int selectChannel(SerializationDelegate<StreamRecord<T>> record) {K key;try {key = keySelector.getKey(record.getInstance().getValue());} catch (Exception e) {throw new RuntimeException("Could not extract key from " + record.getInstance(), e);}//实现Partitioner接口,重写partition方法return partitioner.partition(key, numberOfChannels);}@Overridepublic StreamPartitioner<T> copy() {return this;}@Overridepublic String toString() {return "CUSTOM";}}
比如:
public class CustomPartitioner implements Partitioner<String> {// key: 根据key的值来分区// numPartitions: 下游算子并行度@Overridepublic int partition(String key, int numPartitions) {return key.length() % numPartitions;//在此处定义分区策略}}
小结
本文主要从源码层面对Flink的8中分区策略进行了一一分析,并对每一种分区策略给出了相对应的图示,方便快速理解源码。如果你觉得本文对你有用,可以关注我,了解更多精彩内容。
