R版本与运行环境信息
Date:2021-4-14R version 4.0.3 (2020-10-10)Platform: x86_64-w64-mingw32/x64 (64-bit)Running under: Windows 10 x64 (build 18363)
载入相关包
library("pheatmap")library("Hmisc")
绘制热图
#填上路径setwd("")#填文件名data <- as.matrix(read.csv("data_normalized.csv",header = T,row.names = 1))pheatmap(data,cluster_rows = F, cluster_cols = F)#相关系数热图cor_num <- cor(data)#保存相关系数文件write.csv(cor_num,"cor_data.csv")pheatmap(cor_num,cluster_rows = F, cluster_cols = F)###############################################cor()函数method选项:格式method=""#pearson/kendall/spearman三个相关系数,默认pearson#pheatmap选项#fontsize = 字体大小#border = #边界大小或者存在情况#cellwidth = #方框高度#cellheight = #方框宽度#display = #是否显示数值,可以显示显著性#number_color = "black" #数值颜色#treeheight_row = 列树高#treeheight_col = 行树高#分组#annotation_col =annotation_row 跟上分组文件(列名必须指定)#annotation_row =annotation_row 跟上分组文件(列名必须指定)###############################################显著性检验#Hmisc包,rcorr包分析,得出p-vaulemysor <- rcorr(as.matrix(data),type = "spearman")#相关系数R <- mysor[["r"]]P <- mysor[["P"]]P <- as.vector(P)#校正p-value,校正后的p值应该转换为原来的矩阵格式q_value <- p.adjust(P,"fdr")q_value <- as.matrix(q_value)