1. import numpy as np
    2. import torch
    3. from torch.utils import data
    4. from d2l import torch as d2l
    5. """生成数据"""
    6. true_w = torch.tensor([2, -3.4])
    7. true_b = 4.2
    8. features, labels = d2l.synthetic_data(true_w, true_b, 1000)
    1. def load_array(data_arrays, batch_size, is_train=True): #@save
    2. """构造一个PyTorch数据迭代器。"""
    3. dataset = data.TensorDataset(*data_arrays)
    4. """shuffle=is_train:打乱数据顺序"""
    5. return data.DataLoader(dataset, batch_size, shuffle=is_train)
    6. batch_size = 10
    7. """形成一个新的数据集"""
    8. data_iter = load_array((features, labels), batch_size)
    1. next(iter(data_iter))
    1. [tensor([[ 0.7836, 1.0064],
    2. [-0.6185, -1.3923],
    3. [-0.6124, 0.4895],
    4. [ 0.4377, 0.0993],
    5. [ 0.4083, 0.9128],
    6. [-1.2252, 0.1269],
    7. [-0.4364, -0.5128],
    8. [-0.4539, 0.6795],
    9. [-1.4068, -0.0619],
    10. [-0.9712, -0.1202]]),
    11. tensor([[2.3406],
    12. [7.6942],
    13. [1.3251],
    14. [4.7355],
    15. [1.9154],
    16. [1.3303],
    17. [5.0822],
    18. [0.9745],
    19. [1.5959],
    20. [2.6766]])]
    1. # `nn` 是神经网络的缩写
    2. from torch import nn
    3. net = nn.Sequential(nn.Linear(2, 1))
    1. net[0].weight.data.normal_(0, 0.01)
    2. net[0].bias.data.fill_(0)
    1. tensor([0.])
    1. loss = nn.MSELoss()
    1. trainer = torch.optim.SGD(net.parameters(), lr=0.03)
    1. num_epochs = 3
    2. for epoch in range(num_epochs):
    3. for X, y in data_iter:
    4. l = loss(net(X) ,y)
    5. trainer.zero_grad()
    6. l.backward()
    7. trainer.step()
    8. l = loss(net(features), labels)
    9. print(f'epoch {epoch + 1}, loss {l:f}')
    1. epoch 1, loss 0.000255
    2. epoch 2, loss 0.000098
    3. epoch 3, loss 0.000097