二维卷积可以处理二维数据

    1. torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

    参数:
      in_channel: 输入数据的通道数,例RGB图片通道数为3;
      out_channel: 输出数据的通道数,这个根据模型调整;
      kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2),
      kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
      stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2,
      stride=(2,3),左右扫描步长为2,上下为3;
      padding: 零填充
    例子
    输入数据X[10,16,30,32],其分别代表:10组数据,通道数为16,高度为30,宽为32

    1. import torch
    2. import torch.nn as nn
    3. x = torch.randn(10, 16, 30, 32) # batch, channel , height , width
    4. print(x.shape)
    5. m = nn.Conv2d(16, 33, (3, 2), (2,1)) # in_channel, out_channel ,kennel_size,stride
    6. print(m)
    7. y = m(x)
    8. print(y.shape)
    1. torch.Size([10, 16, 30, 32])
    2. Conv2d(16, 33, kernel_size=(3, 2), stride=(2, 1))
    3. torch.Size([10, 33, 14, 31])

    3.卷积计算过程:
    h/w = (h/w - kennel_size + 2padding) / stride + 1
    x = ([10,16,30,32]),
    其中h=30,w=32,
    对于卷积核长分别是 h:3,w:2 ;
    对于步长分别是h:2,w:1;
    padding默认0;
    h = (30 - 3 + 20)/ 2 +1 = 27/2 +1 = 13+1 =14
    w =(32 - 2 + 2
    0)/ 1 +1 = 30/1 +1 = 30+1 =31
    batch = 10, out_channel = 33
    故: y= ([10, 33, 14, 31])