1. import math
  2. import pandas as pd
  3. import torch
  4. from torch import nn
  5. from d2l import torch as d2l

10.7.2. 基于位置的前馈网络

  1. class PositionWiseFFN(nn.Module):
  2. def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
  3. **kwargs):
  4. super(PositionWiseFFN, self).__init__(**kwargs)
  5. self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
  6. self.relu = nn.ReLU()
  7. self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
  8. def forward(self, X):
  9. return self.dense2(self.relu(self.dense1(X)))
  1. ffn = PositionWiseFFN(4, 4, 8)
  2. ffn.eval()
  3. ffn(torch.ones((2, 3, 4)))[0]
  1. tensor([[ 0.0860, 0.1906, 0.1094, -0.7480, -0.6123, 0.2456, -0.3660, -0.5613],
  2. [ 0.0860, 0.1906, 0.1094, -0.7480, -0.6123, 0.2456, -0.3660, -0.5613],
  3. [ 0.0860, 0.1906, 0.1094, -0.7480, -0.6123, 0.2456, -0.3660, -0.5613]],
  4. grad_fn=<SelectBackward>)

10.7.3. 残差连接和层归一化

  1. ln = nn.LayerNorm(2)
  2. bn = nn.BatchNorm1d(2)
  3. X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
  4. # 在训练模式下计算 `X` 的均值和方差
  5. print('layer norm:', ln(X), '\nbatch norm:', bn(X))
  1. layer norm: tensor([[-1.0000, 1.0000],
  2. [-1.0000, 1.0000]], grad_fn=<NativeLayerNormBackward>)
  3. batch norm: tensor([[-1.0000, -1.0000],
  4. [ 1.0000, 1.0000]], grad_fn=<NativeBatchNormBackward>)
  1. class AddNorm(nn.Module):
  2. def __init__(self, normalized_shape, dropout, **kwargs):
  3. super(AddNorm, self).__init__(**kwargs)
  4. self.dropout = nn.Dropout(dropout)
  5. self.ln = nn.LayerNorm(normalized_shape)
  6. def forward(self, X, Y):
  7. return self.ln(self.dropout(Y) + X)
  1. add_norm = AddNorm([3, 4], 0.5) # Normalized_shape is input.size()[1:]
  2. add_norm.eval()
  3. add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape
  1. torch.Size([2, 3, 4])

10.7.4. 编码器

  1. class EncoderBlock(nn.Module):
  2. def __init__(self, key_size, query_size, value_size, num_hiddens,
  3. norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
  4. dropout, use_bias=False, **kwargs):
  5. super(EncoderBlock, self).__init__(**kwargs)
  6. self.attention = d2l.MultiHeadAttention(
  7. key_size, query_size, value_size, num_hiddens, num_heads, dropout,
  8. use_bias)
  9. self.addnorm1 = AddNorm(norm_shape, dropout)
  10. self.ffn = PositionWiseFFN(
  11. ffn_num_input, ffn_num_hiddens, num_hiddens)
  12. self.addnorm2 = AddNorm(norm_shape, dropout)
  13. def forward(self, X, valid_lens):
  14. Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
  15. return self.addnorm2(Y, self.ffn(Y))
  1. X = torch.ones((2, 100, 24))
  2. valid_lens = torch.tensor([3, 2])
  3. encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5)
  4. encoder_blk.eval()
  5. encoder_blk(X, valid_lens).shape
  1. torch.Size([2, 100, 24])
  1. class TransformerEncoder(d2l.Encoder):
  2. def __init__(self, vocab_size, key_size, query_size, value_size,
  3. num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
  4. num_heads, num_layers, dropout, use_bias=False, **kwargs):
  5. super(TransformerEncoder, self).__init__(**kwargs)
  6. self.num_hiddens = num_hiddens
  7. self.embedding = nn.Embedding(vocab_size, num_hiddens)
  8. self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
  9. self.blks = nn.Sequential()
  10. for i in range(num_layers):
  11. self.blks.add_module("block"+str(i),
  12. EncoderBlock(key_size, query_size, value_size, num_hiddens,
  13. norm_shape, ffn_num_input, ffn_num_hiddens,
  14. num_heads, dropout, use_bias))
  15. def forward(self, X, valid_lens, *args):
  16. # 因为位置编码值在 -1 和 1 之间,
  17. # 因此嵌入值乘以嵌入维度的平方根进行缩放,
  18. # 然后再与位置编码相加。
  19. X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
  20. self.attention_weights = [None] * len(self.blks)
  21. for i, blk in enumerate(self.blks):
  22. X = blk(X, valid_lens)
  23. self.attention_weights[
  24. i] = blk.attention.attention.attention_weights
  25. return X
  1. encoder = TransformerEncoder(
  2. 200, 24, 24, 24, 24, [100, 24], 24, 48, 8, 2, 0.5)
  3. encoder.eval()
  4. encoder(torch.ones((2, 100), dtype=torch.long), valid_lens).shape
  1. torch.Size([2, 100, 24])

10.7.5. 解码器

  1. class DecoderBlock(nn.Module):
  2. """解码器中第 i 个块"""
  3. def __init__(self, key_size, query_size, value_size, num_hiddens,
  4. norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
  5. dropout, i, **kwargs):
  6. super(DecoderBlock, self).__init__(**kwargs)
  7. self.i = i
  8. self.attention1 = d2l.MultiHeadAttention(
  9. key_size, query_size, value_size, num_hiddens, num_heads, dropout)
  10. self.addnorm1 = AddNorm(norm_shape, dropout)
  11. self.attention2 = d2l.MultiHeadAttention(
  12. key_size, query_size, value_size, num_hiddens, num_heads, dropout)
  13. self.addnorm2 = AddNorm(norm_shape, dropout)
  14. self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
  15. num_hiddens)
  16. self.addnorm3 = AddNorm(norm_shape, dropout)
  17. def forward(self, X, state):
  18. enc_outputs, enc_valid_lens = state[0], state[1]
  19. # 训练阶段,输出序列的所有词元都在同一时间处理,
  20. # 因此 `state[2][self.i]` 初始化为 `None`。
  21. # 预测阶段,输出序列是通过词元一个接着一个解码的,
  22. # 因此 `state[2][self.i]` 包含着直到当前时间步第 `i` 个块解码的输出表示
  23. if state[2][self.i] is None:
  24. key_values = X
  25. else:
  26. key_values = torch.cat((state[2][self.i], X), axis=1)
  27. state[2][self.i] = key_values
  28. if self.training:
  29. batch_size, num_steps, _ = X.shape
  30. # `dec_valid_lens` 的开头: (`batch_size`, `num_steps`),
  31. # 其中每一行是 [1, 2, ..., `num_steps`]
  32. dec_valid_lens = torch.arange(
  33. 1, num_steps + 1, device=X.device).repeat(batch_size, 1)
  34. else:
  35. dec_valid_lens = None
  36. # 自注意力
  37. X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
  38. Y = self.addnorm1(X, X2)
  39. # 编码器-解码器注意力。
  40. # `enc_outputs` 的开头: (`batch_size`, `num_steps`, `num_hiddens`)
  41. Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
  42. Z = self.addnorm2(Y, Y2)
  43. return self.addnorm3(Z, self.ffn(Z)), state
  1. decoder_blk = DecoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5, 0)
  2. decoder_blk.eval()
  3. X = torch.ones((2, 100, 24))
  4. state = [encoder_blk(X, valid_lens), valid_lens, [None]]
  5. decoder_blk(X, state)[0].shape
  1. class TransformerDecoder(d2l.AttentionDecoder):
  2. def __init__(self, vocab_size, key_size, query_size, value_size,
  3. num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
  4. num_heads, num_layers, dropout, **kwargs):
  5. super(TransformerDecoder, self).__init__(**kwargs)
  6. self.num_hiddens = num_hiddens
  7. self.num_layers = num_layers
  8. self.embedding = nn.Embedding(vocab_size, num_hiddens)
  9. self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
  10. self.blks = nn.Sequential()
  11. for i in range(num_layers):
  12. self.blks.add_module("block"+str(i),
  13. DecoderBlock(key_size, query_size, value_size, num_hiddens,
  14. norm_shape, ffn_num_input, ffn_num_hiddens,
  15. num_heads, dropout, i))
  16. self.dense = nn.Linear(num_hiddens, vocab_size)
  17. def init_state(self, enc_outputs, enc_valid_lens, *args):
  18. return [enc_outputs, enc_valid_lens, [None] * self.num_layers]
  19. def forward(self, X, state):
  20. X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
  21. self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
  22. for i, blk in enumerate(self.blks):
  23. X, state = blk(X, state)
  24. # 解码器自注意力权重
  25. self._attention_weights[0][
  26. i] = blk.attention1.attention.attention_weights
  27. # “编码器-解码器”自注意力权重
  28. self._attention_weights[1][
  29. i] = blk.attention2.attention.attention_weights
  30. return self.dense(X), state
  31. @property
  32. def attention_weights(self):
  33. return self._attention_weights

10.7.6. 训练

  1. num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
  2. lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
  3. ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
  4. key_size, query_size, value_size = 32, 32, 32
  5. norm_shape = [32]
  6. train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
  7. encoder = TransformerEncoder(
  8. len(src_vocab), key_size, query_size, value_size, num_hiddens,
  9. norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
  10. num_layers, dropout)
  11. decoder = TransformerDecoder(
  12. len(tgt_vocab), key_size, query_size, value_size, num_hiddens,
  13. norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
  14. num_layers, dropout)
  15. net = d2l.EncoderDecoder(encoder, decoder)
  16. d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
  1. loss 0.030, 5244.8 tokens/sec on cuda:0

image.png
训练结束后,使用 Transformer 模型将一些英语句子翻译成法语,
并且计算它们的 BLEU 分数。

  1. engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
  2. fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
  3. for eng, fra in zip(engs, fras):
  4. translation, dec_attention_weight_seq = d2l.predict_seq2seq(
  5. net, eng, src_vocab, tgt_vocab, num_steps, device, True)
  6. print(f'{eng} => {translation}, ',
  7. f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
  1. go . => va !, bleu 1.000
  2. i lost . => j'ai perdu ., bleu 1.000
  3. he's calm . => il est calme ., bleu 1.000
  4. i'm home . => je suis chez moi ., bleu 1.000
  1. enc_attention_weights = torch.cat(net.encoder.attention_weights, 0).reshape((num_layers, num_heads,
  2. -1, num_steps))
  3. enc_attention_weights.shape
  1. torch.Size([2, 4, 10, 10])