【CNN】理解卷积神经网络中的卷积层

  • 输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数
  • 输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度、图像宽度、图像通道数)的尺寸发生变化。
  • 权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度、卷积核宽度、输入通道数、输出通道数(卷积核个数)
  • 输入矩阵、权重矩阵、输出矩阵这三者之间的相互决定关系
    • 卷积核的输入通道数(in depth)由输入矩阵的通道数所决定。(红色标注)
    • 输出矩阵的通道数(out depth)由卷积核的输出通道数所决定。(绿色标注)
    • 输出矩阵的高度和宽度(height, width)这两个维度的尺寸由输入矩阵、卷积核、扫描方式所共同决定。计算公式如下。(蓝色标注)

卷积参数计算🎶🎶 - 图1

  • 注:以下计算演示均省略掉了 Bias ,严格来说其实每个卷积核都还有一个 Bias 参数。

标准卷积计算举例

以 AlexNet 模型的第一个卷积层为例,
- 输入图片的尺寸统一为 227 x 227 x 3 (高度 x 宽度 x 颜色通道数),
- 本层一共具有96个卷积核,
- 每个卷积核的尺寸都是 11 x 11 x 3。
- 已知 stride = 4, padding = 0,
- 假设 batch_size = 256,
- 则输出矩阵的高度/宽度为 (227 - 11) / 4 + 1 = 55
卷积参数计算🎶🎶 - 图2

1 x 1 卷积计算举例

后期 GoogLeNet、ResNet 等经典模型中普遍使用一个像素大小的卷积核作为降低参数复杂度的手段。
从下面的运算可以看到,其实 1 x 1 卷积没有什么神秘的,其作用就是将输入矩阵的通道数量缩减后输出(512 降为 32),并保持它在宽度和高度维度上的尺寸(227 x 227)。
卷积参数计算🎶🎶 - 图3

全连接层计算举例

实际上,全连接层也可以被视为是一种极端情况的卷积层,其卷积核尺寸就是输入矩阵尺寸,因此输出矩阵的高度和宽度尺寸都是1。
卷积参数计算🎶🎶 - 图4

总结下来,其实只需要认识到,虽然输入的每一张图像本身具有三个维度,但是对于卷积核来讲依然只是一个一维向量。卷积核做的,其实就是与感受野范围内的像素点进行点积(而不是矩阵乘法)。

附:TensorFlow 中卷积层的简单实现

def conv_layer(x, out_channel, k_size, stride, padding): in_channel = x.shape[3].value w = tf.Variable(tf.truncated_normal([k_size, k_size, in_channel, out_channel], mean=0, stddev=stddev)) b = tf.Variable(tf.zeros(out_channel)) y = tf.nn.conv2d(x, filter=w, strides=[1, stride, stride, 1], padding=padding) y = tf.nn.bias_add(y, b) y = tf.nn.relu(y) return x

  • 输入 x:[batch, height, width, in_channel]
  • 权重 w:[height, width, in_channel, out_channel]
  • 输出 y:[batch, height, width, out_channel]

【CNN】理解卷积神经网络中的通道 channel

在深度学习的算法学习中,都会提到 channels 这个概念。在一般的深度学习框架的 conv2d 中,如 tensorflow 、mxnet ,channels 都是必填的一个参数。
channels 该如何理解?先看一看不同框架中的解释文档。

首先,是 tensorflow 中给出的,对于输入样本中 channels 的含义。一般的RGB图片,channels 数量是 3 (红、绿、蓝);而monochrome图片,channels 数量是 1 。

  1. channels : Number of color channels in the example images. For color images, the number of channels is 3 (red, green, blue). For monochrome images, there is just 1 channel (black). ——tensorflow

其次,mxnet 中提到的,一般 channels 的含义是,每个卷积层中卷积核的数量。

  1. channels (int) : The dimensionality of the output space, i.e. the number of output channels (filters) in the convolution. ——mxnet

为了更直观的理解,下面举个例子,图片使用自 吴恩达老师的深度学习课程 。

如下图,假设现有一个为 6×6×3
的图片样本,使用 3×3×3 的卷积核(filter)进行卷积操作。此时输入图片的 channels 为 3 ,而卷积核中的 in_channels 与 需要进行卷积操作的数据的 channels 一致(这里就是图片样本,为3)。
图片.png
接下来,进行卷积操作,卷积核中的27个数字与分别与样本对应相乘后,再进行求和,得到第一个结果。依次进行,最终得到 4×4 的结果。
图片.png
上面步骤完成后,由于只有一个卷积核,所以最终得到的结果为 4×4×1 , out_channels 为 1。
在实际应用中,都会使用多个卷积核。这里如果再加一个卷积核,就会得到 4×4×2
的结果。
图片.png
总结一下,我偏好把上面提到的 channels 分为三种:

  • 最初输入的图片样本的 channels ,取决于图片类型,比如RGB;
  • 卷积操作完成后输出的 out_channels ,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels;
  • 卷积核中的 in_channels ,刚刚2中已经说了,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 。

说到这里,相信已经把 channels 讲的很清楚了。在CNN中,想搞清楚每一层的传递关系,主要就是 height,width 的变化情况,和 channels 的变化情况。

最后再看看 tensorflow 中 tf.nn.conv2d 的 input 和 filter 这两个参数。
input : [batch, in_height, in_width, in_channels] ,
filter : [filter_height, filter_width, in_channels, out_channels] 。

里面的含义是不是很清楚了?
图片.png

[

](https://blog.csdn.net/sscc_learning/article/details/79814146)