一,准备数据

titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。
结构化数据一般会使用Pandas中的DataFrame进行预处理。

  1. import numpy as np
  2. import pandas as pd
  3. import matplotlib.pyplot as plt
  4. import tensorflow as tf
  5. from tensorflow.keras import models,layers
  6. dftrain_raw = pd.read_csv('./data/titanic/train.csv')
  7. dftest_raw = pd.read_csv('./data/titanic/test.csv')
  8. dftrain_raw.head(10)

image.png
字段说明:

  • Survived:0代表死亡,1代表存活【y标签】
  • Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】
  • Name:乘客姓名 【舍去】
  • Sex:乘客性别 【转换成bool特征】
  • Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】
  • SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】
  • Parch:乘客父母/孩子的个数(整数值)【数值特征】
  • Ticket:票号(字符串)【舍去】
  • Fare:乘客所持票的价格(浮点数,0-500不等) 【数值特征】
  • Cabin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】
  • Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】

利用Pandas的数据可视化功能我们可以简单地进行探索性数据分析EDA(Exploratory Data Analysis)。
label分布情况

  1. %matplotlib inline
  2. %config InlineBackend.figure_format = 'png'
  3. ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar',
  4. figsize = (12,8),fontsize=15,rot = 0)
  5. ax.set_ylabel('Counts',fontsize = 15)
  6. ax.set_xlabel('Survived',fontsize = 15)
  7. plt.show()

image.png

年龄分布情况

  1. %matplotlib inline
  2. %config InlineBackend.figure_format = 'png'
  3. ax = dftrain_raw['Age'].plot(kind = 'hist',bins = 20,color= 'purple',
  4. figsize = (12,8),fontsize=15)
  5. ax.set_ylabel('Frequency',fontsize = 15)
  6. ax.set_xlabel('Age',fontsize = 15)
  7. plt.show()

image.png

年龄和label的相关性

  1. %matplotlib inline
  2. %config InlineBackend.figure_format = 'png'
  3. ax = dftrain_raw.query('Survived == 0')['Age'].plot(kind = 'density',
  4. figsize = (12,8),fontsize=15)
  5. dftrain_raw.query('Survived == 1')['Age'].plot(kind = 'density',
  6. figsize = (12,8),fontsize=15)
  7. ax.legend(['Survived==0','Survived==1'],fontsize = 12)
  8. ax.set_ylabel('Density',fontsize = 15)
  9. ax.set_xlabel('Age',fontsize = 15)
  10. plt.show()

image.png

下面为正式的数据预处理

  1. def preprocessing(dfdata):
  2. dfresult= pd.DataFrame()
  3. #Pclass
  4. dfPclass = pd.get_dummies(dfdata['Pclass'])
  5. dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ]
  6. dfresult = pd.concat([dfresult,dfPclass],axis = 1)
  7. #Sex
  8. dfSex = pd.get_dummies(dfdata['Sex'])
  9. dfresult = pd.concat([dfresult,dfSex],axis = 1)
  10. #Age
  11. dfresult['Age'] = dfdata['Age'].fillna(0)
  12. dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')
  13. #SibSp,Parch,Fare
  14. dfresult['SibSp'] = dfdata['SibSp']
  15. dfresult['Parch'] = dfdata['Parch']
  16. dfresult['Fare'] = dfdata['Fare']
  17. #Carbin
  18. dfresult['Cabin_null'] = pd.isna(dfdata['Cabin']).astype('int32')
  19. #Embarked
  20. dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)
  21. dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
  22. dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)
  23. return(dfresult)
  24. x_train = preprocessing(dftrain_raw)
  25. y_train = dftrain_raw['Survived'].values
  26. x_test = preprocessing(dftest_raw)
  27. y_test = dftest_raw['Survived'].values
  28. print("x_train.shape =", x_train.shape )
  29. print("x_test.shape =", x_test.shape )
  1. x_train.shape = (712, 15)
  2. x_test.shape = (179, 15)

二,定义模型

使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

此处选择使用最简单的Sequential,按层顺序模型。

  1. tf.keras.backend.clear_session()
  2. model = models.Sequential()
  3. model.add(layers.Dense(20,activation = 'relu',input_shape=(15,)))
  4. model.add(layers.Dense(10,activation = 'relu' ))
  5. model.add(layers.Dense(1,activation = 'sigmoid' ))
  6. model.summary()
  1. Model: "sequential"
  2. _________________________________________________________________
  3. Layer (type) Output Shape Param #
  4. =================================================================
  5. dense (Dense) (None, 20) 320
  6. _________________________________________________________________
  7. dense_1 (Dense) (None, 10) 210
  8. _________________________________________________________________
  9. dense_2 (Dense) (None, 1) 11
  10. =================================================================
  11. Total params: 541
  12. Trainable params: 541
  13. Non-trainable params: 0
  14. _________________________________________________________________

三,训练模型

训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法。

  1. # 二分类问题选择二元交叉熵损失函数
  2. model.compile(optimizer='adam',
  3. loss='binary_crossentropy',
  4. metrics=['AUC'])
  5. history = model.fit(x_train,y_train,
  6. batch_size= 64,
  7. epochs= 30,
  8. validation_split=0.2 #分割一部分训练数据用于验证
  9. )
  1. Train on 569 samples, validate on 143 samples
  2. Epoch 1/30
  3. 569/569 [==============================] - 1s 2ms/sample - loss: 3.5841 - AUC: 0.4079 - val_loss: 3.4429 - val_AUC: 0.4129
  4. Epoch 2/30
  5. 569/569 [==============================] - 0s 102us/sample - loss: 2.6093 - AUC: 0.3967 - val_loss: 2.4886 - val_AUC: 0.4139
  6. Epoch 3/30
  7. 569/569 [==============================] - 0s 68us/sample - loss: 1.8375 - AUC: 0.4003 - val_loss: 1.7383 - val_AUC: 0.4223
  8. Epoch 4/30
  9. 569/569 [==============================] - 0s 83us/sample - loss: 1.2545 - AUC: 0.4390 - val_loss: 1.1936 - val_AUC: 0.4765
  10. Epoch 5/30
  11. 569/569 [==============================] - ETA: 0s - loss: 1.4435 - AUC: 0.375 - 0s 90us/sample - loss: 0.9141 - AUC: 0.5192 - val_loss: 0.8274 - val_AUC: 0.5584
  12. Epoch 6/30
  13. 569/569 [==============================] - 0s 110us/sample - loss: 0.7052 - AUC: 0.6290 - val_loss: 0.6596 - val_AUC: 0.6880
  14. Epoch 7/30
  15. 569/569 [==============================] - 0s 90us/sample - loss: 0.6410 - AUC: 0.7086 - val_loss: 0.6519 - val_AUC: 0.6845
  16. Epoch 8/30
  17. 569/569 [==============================] - 0s 93us/sample - loss: 0.6246 - AUC: 0.7080 - val_loss: 0.6480 - val_AUC: 0.6846
  18. Epoch 9/30
  19. 569/569 [==============================] - 0s 73us/sample - loss: 0.6088 - AUC: 0.7113 - val_loss: 0.6497 - val_AUC: 0.6838
  20. Epoch 10/30
  21. 569/569 [==============================] - 0s 79us/sample - loss: 0.6051 - AUC: 0.7117 - val_loss: 0.6454 - val_AUC: 0.6873
  22. Epoch 11/30
  23. 569/569 [==============================] - 0s 96us/sample - loss: 0.5972 - AUC: 0.7218 - val_loss: 0.6369 - val_AUC: 0.6888
  24. Epoch 12/30
  25. 569/569 [==============================] - 0s 92us/sample - loss: 0.5918 - AUC: 0.7294 - val_loss: 0.6330 - val_AUC: 0.6908
  26. Epoch 13/30
  27. 569/569 [==============================] - 0s 75us/sample - loss: 0.5864 - AUC: 0.7363 - val_loss: 0.6281 - val_AUC: 0.6948
  28. Epoch 14/30
  29. 569/569 [==============================] - 0s 104us/sample - loss: 0.5832 - AUC: 0.7426 - val_loss: 0.6240 - val_AUC: 0.7030
  30. Epoch 15/30
  31. 569/569 [==============================] - 0s 74us/sample - loss: 0.5777 - AUC: 0.7507 - val_loss: 0.6200 - val_AUC: 0.7066
  32. Epoch 16/30
  33. 569/569 [==============================] - 0s 79us/sample - loss: 0.5726 - AUC: 0.7569 - val_loss: 0.6155 - val_AUC: 0.7132
  34. Epoch 17/30
  35. 569/569 [==============================] - 0s 99us/sample - loss: 0.5674 - AUC: 0.7643 - val_loss: 0.6070 - val_AUC: 0.7255
  36. Epoch 18/30
  37. 569/569 [==============================] - 0s 97us/sample - loss: 0.5631 - AUC: 0.7721 - val_loss: 0.6061 - val_AUC: 0.7305
  38. Epoch 19/30
  39. 569/569 [==============================] - 0s 73us/sample - loss: 0.5580 - AUC: 0.7792 - val_loss: 0.6027 - val_AUC: 0.7332
  40. Epoch 20/30
  41. 569/569 [==============================] - 0s 85us/sample - loss: 0.5533 - AUC: 0.7861 - val_loss: 0.5997 - val_AUC: 0.7366
  42. Epoch 21/30
  43. 569/569 [==============================] - 0s 87us/sample - loss: 0.5497 - AUC: 0.7926 - val_loss: 0.5961 - val_AUC: 0.7433
  44. Epoch 22/30
  45. 569/569 [==============================] - 0s 101us/sample - loss: 0.5454 - AUC: 0.7987 - val_loss: 0.5943 - val_AUC: 0.7438
  46. Epoch 23/30
  47. 569/569 [==============================] - 0s 100us/sample - loss: 0.5398 - AUC: 0.8057 - val_loss: 0.5926 - val_AUC: 0.7492
  48. Epoch 24/30
  49. 569/569 [==============================] - 0s 79us/sample - loss: 0.5328 - AUC: 0.8122 - val_loss: 0.5912 - val_AUC: 0.7493
  50. Epoch 25/30
  51. 569/569 [==============================] - 0s 86us/sample - loss: 0.5283 - AUC: 0.8147 - val_loss: 0.5902 - val_AUC: 0.7509
  52. Epoch 26/30
  53. 569/569 [==============================] - 0s 67us/sample - loss: 0.5246 - AUC: 0.8196 - val_loss: 0.5845 - val_AUC: 0.7552
  54. Epoch 27/30
  55. 569/569 [==============================] - 0s 72us/sample - loss: 0.5205 - AUC: 0.8271 - val_loss: 0.5837 - val_AUC: 0.7584
  56. Epoch 28/30
  57. 569/569 [==============================] - 0s 74us/sample - loss: 0.5144 - AUC: 0.8302 - val_loss: 0.5848 - val_AUC: 0.7561
  58. Epoch 29/30
  59. 569/569 [==============================] - 0s 77us/sample - loss: 0.5099 - AUC: 0.8326 - val_loss: 0.5809 - val_AUC: 0.7583
  60. Epoch 30/30
  61. 569/569 [==============================] - 0s 80us/sample - loss: 0.5071 - AUC: 0.8349 - val_loss: 0.5816 - val_AUC: 0.7605

四,评估模型

我们首先评估一下模型在训练集和验证集上的效果。

  1. %matplotlib inline
  2. %config InlineBackend.figure_format = 'svg'
  3. import matplotlib.pyplot as plt
  4. def plot_metric(history, metric):
  5. train_metrics = history.history[metric]
  6. val_metrics = history.history['val_'+metric]
  7. epochs = range(1, len(train_metrics) + 1)
  8. plt.plot(epochs, train_metrics, 'bo--')
  9. plt.plot(epochs, val_metrics, 'ro-')
  10. plt.title('Training and validation '+ metric)
  11. plt.xlabel("Epochs")
  12. plt.ylabel(metric)
  13. plt.legend(["train_"+metric, 'val_'+metric])
  14. plt.show()
  1. plot_metric(history,"loss")

image.png

  1. plot_metric(history,"AUC")

image.png
我们再看一下模型在测试集上的效果.

  1. model.evaluate(x = x_test,y = y_test)
  1. [0.5191367897907448, 0.8122605]

五,使用模型

  1. #预测概率
  2. model.predict(x_test[0:10])
  3. #model(tf.constant(x_test[0:10].values,dtype = tf.float32)) #等价写法
  1. array([[0.26501188],
  2. [0.40970832],
  3. [0.44285864],
  4. [0.78408605],
  5. [0.47650957],
  6. [0.43849158],
  7. [0.27426785],
  8. [0.5962582 ],
  9. [0.59476686],
  10. [0.17882936]], dtype=float32)
  1. #预测类别
  2. model.predict_classes(x_test[0:10])
  1. array([[0],
  2. [0],
  3. [0],
  4. [1],
  5. [0],
  6. [0],
  7. [0],
  8. [1],
  9. [1],
  10. [0]], dtype=int32)

六,保存模型

可以使用Keras方式保存模型,也可以使用TensorFlow原生方式保存。前者仅仅适合使用Python环境恢复模型,后者则可以跨平台进行模型部署。

推荐使用后一种方式进行保存。

1,Keras方式保存

  1. # 保存模型结构及权重
  2. model.save('./data/keras_model.h5')
  3. del model #删除现有模型
  4. # identical to the previous one
  5. model = models.load_model('./data/keras_model.h5')
  6. model.evaluate(x_test,y_test)
  1. [0.5191367897907448, 0.8122605]
  1. # 保存模型结构
  2. json_str = model.to_json()
  3. # 恢复模型结构
  4. model_json = models.model_from_json(json_str)
  1. #保存模型权重
  2. model.save_weights('./data/keras_model_weight.h5')
  3. # 恢复模型结构
  4. model_json = models.model_from_json(json_str)
  5. model_json.compile(
  6. optimizer='adam',
  7. loss='binary_crossentropy',
  8. metrics=['AUC']
  9. )
  10. # 加载权重
  11. model_json.load_weights('./data/keras_model_weight.h5')
  12. model_json.evaluate(x_test,y_test)
  1. [0.5191367897907448, 0.8122605]

2,TensorFlow原生方式保存

  1. # 保存权重,该方式仅仅保存权重张量
  2. model.save_weights('./data/tf_model_weights.ckpt',save_format = "tf")
  1. # 保存模型结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署
  2. model.save('./data/tf_model_savedmodel', save_format="tf")
  3. print('export saved model.')
  4. model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel')
  5. model_loaded.evaluate(x_test,y_test)
  1. [0.5191365896656527, 0.8122605]