Eureka是什么

Eureka(尤里卡)是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的。
SpringCloud将它集成在其子项目spring-cloud-netflix中,以实现SpringCloud的服务发现功能。
Eureka包含两个组件:Eureka Server和Eureka Client。
Eureka Server提供服务注册服务,各个节点启动后,会在Eureka Server中进行注册,这样EurekaServer中的服务注册表中将会存储所有可用服务节点的信息,服务节点的信息可以在界面中直观的看到。
Eureka Client是一个java客户端,用于简化与Eureka Server的交互,客户端同时也就是一个内置的、使用轮询(round-robin)负载算法的负载均衡器
在应用启动后,将会向Eureka Server发送心跳,默认周期为30秒,如果Eureka Server在多个心跳周期内没有接收到某个节点的心跳,Eureka Server将会从服务注册表中把这个服务节点移除(默认90秒)。
Eureka Server之间通过复制的方式完成数据的同步,Eureka还提供了客户端缓存机制,即使所有的Eureka Server都挂掉,客户端依然可以利用缓存中的信息消费其他服务的API。综上,Eureka通过心跳检查、客户端缓存等机制,确保了系统的高可用性、灵活性和可伸缩性。
CSND他人笔记

Eureka 工作原理

Eureka 作为 Spring Cloud 体系中最核心、默认的注册中心组件,研究它的运行机制,有助于我们在工作中更好地使用它。

Eureka 核心概念

服务注册调用示意图,服务提供者和服务的消费者,本质上也是 Eureka Client 角色。整体上可以分为两个主体:Eureka Server 和 Eureka Client。
image.png

Eureka Server:注册中心服务端

注册中心服务端主要对外提供了三个功能:

服务注册

服务提供者启动时,会通过 Eureka Client 向 Eureka Server 注册信息,Eureka Server 会存储该服务的信息,Eureka Server 内部有二层缓存机制来维护整个注册表

提供注册表

服务消费者在调用服务时,如果 Eureka Client 没有缓存注册表的话,会从 Eureka Server 获取最新的注册表

同步状态

Eureka Client 通过注册、心跳机制和 Eureka Server 同步当前客户端的状态。

Eureka Client:注册中心客户端

Eureka Client 是一个 Java 客户端,用于简化与 Eureka Server 的交互。Eureka Client 会拉取、更新和缓存 Eureka Server 中的信息。因此当所有的 Eureka Server 节点都宕掉,服务消费者依然可以使用缓存中的信息找到服务提供者,但是当服务有更改的时候会出现信息不一致。

Register: 服务注册

服务的提供者,将自身注册到注册中心,服务提供者也是一个 Eureka Client。当 Eureka Client 向 Eureka Server 注册时,它提供自身的元数据,比如 IP 地址、端口,运行状况指示符 URL,主页等。

Renew: 服务续约

Eureka Client 会每隔 30 秒发送一次心跳来续约。 通过续约来告知 Eureka Server 该 Eureka Client 运行正常,没有出现问题。 默认情况下,如果 Eureka Server 在 90 秒内没有收到 Eureka Client 的续约,Server 端会将实例从其注册表中删除,此时间可配置,一般情况不建议更改。

服务续约的两个重要属性

服务续约任务的调用间隔时间,默认为30秒
eureka.instance.lease-renewal-interval-in-seconds=30

服务失效的时间,默认为90秒。
eureka.instance.lease-expiration-duration-in-seconds=90

Eviction 服务剔除

当 Eureka Client 和 Eureka Server 不再有心跳时,Eureka Server 会将该服务实例从服务注册列表中删除,即服务剔除。

Cancel: 服务下线

Eureka Client 在程序关闭时向 Eureka Server 发送取消请求。 发送请求后,该客户端实例信息将从 Eureka Server 的实例注册表中删除。该下线请求不会自动完成,它需要调用以下内容:

DiscoveryManager.getInstance().shutdownComponent();

GetRegisty: 获取注册列表信息
Eureka Client 从服务器获取注册表信息,并将其缓存在本地。客户端会使用该信息查找其他服务,从而进行远程调用。该注册列表信息定期(每30秒钟)更新一次。每次返回注册列表信息可能与 Eureka Client 的缓存信息不同,Eureka Client 自动处理。

如果由于某种原因导致注册列表信息不能及时匹配,Eureka Client 则会重新获取整个注册表信息。 Eureka Server 缓存注册列表信息,整个注册表以及每个应用程序的信息进行了压缩,压缩内容和没有压缩的内容完全相同。Eureka Client 和 Eureka Server 可以使用 JSON/XML 格式进行通讯。在默认情况下 Eureka Client 使用压缩 JSON 格式来获取注册列表的信息。

获取服务是服务消费者的基础,所以必有两个重要参数需要注意:

启用服务消费者从注册中心拉取服务列表的功能
eureka.client.fetch-registry=true

设置服务消费者从注册中心拉取服务列表的间隔
eureka.client.registry-fetch-interval-seconds=30

Remote Call: 远程调用

当 Eureka Client 从注册中心获取到服务提供者信息后,就可以通过 Http 请求调用对应的服务;服务提供者有多个时,Eureka Client 客户端会通过 Ribbon 自动进行负载均衡。

自我保护机制

默认情况下,如果 Eureka Server 在一定的 90s 内没有接收到某个微服务实例的心跳,会注销该实例。但是在微服务架构下服务之间通常都是跨进程调用,网络通信往往会面临着各种问题,比如微服务状态正常,网络分区故障,导致此实例被注销。

固定时间内大量实例被注销,可能会严重威胁整个微服务架构的可用性。为了解决这个问题,Eureka 开发了自我保护机制,那么什么是自我保护机制呢?

Eureka Server 在运行期间会去统计心跳失败比例在 15 分钟之内是否低于 85%,如果低于 85%,Eureka Server 即会进入自我保护机制。

Eureka Server 触发自我保护机制后,页面会出现提示:

Eureka Server 进入自我保护机制,会出现以下几种情况:
(1 Eureka 不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
(2 Eureka 仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)
(3 当网络稳定时,当前实例新的注册信息会被同步到其它节点中

Eureka 自我保护机制是为了防止误杀服务而提供的一个机制。当个别客户端出现心跳失联时,则认为是客户端的问题,剔除掉客户端;当 Eureka 捕获到大量的心跳失败时,则认为可能是网络问题,进入自我保护机制;当客户端心跳恢复时,Eureka 会自动退出自我保护机制。

如果在保护期内刚好这个服务提供者非正常下线了,此时服务消费者就会拿到一个无效的服务实例,即会调用失败。对于这个问题需要服务消费者端要有一些容错机制,如重试,断路器等。

通过在 Eureka Server 配置如下参数,开启或者关闭保护机制,生产环境建议打开:

eureka.server.enable-self-preservation=true

Eureka 集群原理

再来看看 Eureka 集群的工作原理。我们假设有三台 Eureka Server 组成的集群,第一台 Eureka Server 在北京机房,另外两台 Eureka Server 在深圳和西安机房。这样三台 Eureka Server 就组建成了一个跨区域的高可用集群,只要三个地方的任意一个机房不出现问题,都不会影响整个架构的稳定性。

从图中可以看出 Eureka Server 集群相互之间通过 Replicate 来同步数据,相互之间不区分主节点和从节点,所有的节点都是平等的。在这种架构中,节点通过彼此互相注册来提高可用性,每个节点需要添加一个或多个有效的 serviceUrl 指向其他节点。

如果某台 Eureka Server 宕机,Eureka Client 的请求会自动切换到新的 Eureka Server 节点。当宕机的服务器重新恢复后,Eureka 会再次将其纳入到服务器集群管理之中。当节点开始接受客户端请求时,所有的操作都会进行节点间复制,将请求复制到其它 Eureka Server 当前所知的所有节点中。

另外 Eureka Server 的同步遵循着一个非常简单的原则:只要有一条边将节点连接,就可以进行信息传播与同步。所以,如果存在多个节点,只需要将节点之间两两连接起来形成通路,那么其它注册中心都可以共享信息。每个 Eureka Server 同时也是 Eureka Client,多个 Eureka Server 之间通过 P2P 的方式完成服务注册表的同步。

Eureka Server 集群之间的状态是采用异步方式同步的,所以不保证节点间的状态一定是一致的,不过基本能保证最终状态是一致的。

Eureka 分区

Eureka 提供了 Region 和 Zone 两个概念来进行分区,这两个概念均来自于亚马逊的 AWS:
region:可以理解为地理上的不同区域,比如亚洲地区,中国区或者深圳等等。没有具体大小的限制。根据项目具体的情况,可以自行合理划分 region。
zone:可以简单理解为 region 内的具体机房,比如说 region 划分为深圳,然后深圳有两个机房,就可以在此 region 之下划分出 zone1、zone2 两个 zone。

上图中的 us-east-1c、us-east-1d、us-east-1e 就代表了不同的 Zone。Zone 内的 Eureka Client 优先和 Zone 内的 Eureka Server 进行心跳同步,同样调用端优先在 Zone 内的 Eureka Server 获取服务列表,当 Zone 内的 Eureka Server 挂掉之后,才会从别的 Zone 中获取信息。

Eurka 保证 AP

Eureka Server 各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而 Eureka Client 在向某个 Eureka 注册时,如果发现连接失败,则会自动切换至其它节点。只要有一台 Eureka Server 还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。

Eurka 工作流程

了解完 Eureka 核心概念,自我保护机制,以及集群内的工作原理后,我们来整体梳理一下 Eureka 的工作流程:

1、Eureka Server 启动成功,等待服务端注册。在启动过程中如果配置了集群,集群之间定时通过 Replicate 同步注册表,每个 Eureka Server 都存在独立完整的服务注册表信息

2、Eureka Client 启动时根据配置的 Eureka Server 地址去注册中心注册服务

3、Eureka Client 会每 30s 向 Eureka Server 发送一次心跳请求,证明客户端服务正常

4、当 Eureka Server 90s 内没有收到 Eureka Client 的心跳,注册中心则认为该节点失效,会注销该实例

5、单位时间内 Eureka Server 统计到有大量的 Eureka Client 没有上送心跳,则认为可能为网络异常,进入自我保护机制,不再剔除没有上送心跳的客户端

6、当 Eureka Client 心跳请求恢复正常之后,Eureka Server 自动退出自我保护模式

7、Eureka Client 定时全量或者增量从注册中心获取服务注册表,并且将获取到的信息缓存到本地

8、服务调用时,Eureka Client 会先从本地缓存找寻调取的服务。如果获取不到,先从注册中心刷新注册表,再同步到本地缓存

9、Eureka Client 获取到目标服务器信息,发起服务调用

10、Eureka Client 程序关闭时向 Eureka Server 发送取消请求,Eureka Server 将实例从注册表中删除

这就是Eurka基本工作流程

总结

讲了 Eureka 核心概念、Eureka 自我保护机制和 Eureka 集群原理。通过分析 Eureka 工作原理,我可以明显地感觉到 Eureka 的设计之巧妙,通过一些列的机制,完美地解决了注册中心的稳定性和高可用性。

Eureka 为了保障注册中心的高可用性,容忍了数据的非强一致性,服务节点间的数据可能不一致, Client-Server 间的数据可能不一致。比较适合跨越多机房、对注册中心服务可用性要求较高的使用场景。

Eureka设计原则

Eureka的设计原则是AP,即可用性和分区容错性。他保证了注册中心的可用性,但舍弃了数据一致性,各节点上的数据有可能是不一致的(会最终一致)。

Eureka采用纯Java实现,除实现了注册中心基本的服务注册和发现之外,极大的满足注册中心的可用性,即使只有一台服务可用,也可以保证注册中心的可用性。

本文将聚焦到Eureka的内部实现原理,先从微服务架构的部署图介绍Eureka的总体架构,然后剖析服务信息的存储结构,最后探究跟服务生命周期相关的服务注册机制、服务续约机制、服务注销机制、服务剔除机制、服务获取机制、和服务同步机制。

Eureka总体架构

下面是Eureka注册中心部署在多个机房的架构图,这正是他高可用性的优势(Zookeeper千万别这么部署)。

image.png

从组件功能看:

黄色注册中心集群,分别部署在北京、天津、青岛机房;

红色服务提供者,分别部署北京和青岛机房;

淡绿色服务消费者,分别部署在北京和天津机房;

从机房分布看:

北京机房部署了注册中心、服务提供者和服务消费者;

天津机房部署了注册中心和服务消费者;

青岛机房部署了注册中心和服务提供者;

组件调用关系

服务提供者

1、启动后,向注册中心发起register请求,注册服务

2、在运行过程中,定时向注册中心发送renew心跳,证明“我还活着”。

3、停止服务提供者,向注册中心发起cancel请求,清空当前服务注册信息。

服务消费者

1、启动后,从注册中心拉取服务注册信息

2、在运行过程中,定时更新服务注册信息。

3、服务消费者发起远程调用:

a> 服务消费者(北京)会从服务注册信息中选择同机房的服务提供者(北京),发起远程调用。只有同机房的服务提供者挂了才会选择其他机房的服务提供者(青岛)。

b> 服务消费者(天津)因为同机房内没有服务提供者,则会按负载均衡算法选择北京或青岛的服务提供者,发起远程调用。

注册中心

1、启动后,从其他节点拉取服务注册信息。

2、运行过程中,定时运行evict任务,剔除没有按时renew的服务(包括非正常停止和网络故障的服务)。

3、运行过程中,接收到的register、renew、cancel请求,都会同步至其他注册中心节点。

本文将详细说明上图中的registry、register、renew、cancel、getRegistry、evict的内部机制。

数据存储结构

既然是服务注册中心,必然要存储服务的信息,我们知道ZK是将服务信息保存在树形节点上。而下面是Eureka的数据存储结构:
image.png

Eureka的数据存储分了两层:数据存储层和缓存层。Eureka Client在拉取服务信息时,先从缓存层获取(相当于Redis),如果获取不到,先把数据存储层的数据加载到缓存中(相当于Mysql),再从缓存中获取。值得注意的是,数据存储层的数据结构是服务信息,而缓存中保存的是经过处理加工过的、可以直接传输到Eureka Client的数据结构。

Eureka这样的数据结构设计是把内部的数据存储结构与对外的数据结构隔离开了,就像是我们平时在进行接口设计一样,对外输出的数据结构和数据库中的数据结构往往都是不一样的。

数据存储层

这里为什么说是存储层而不是持久层?因为rigistry本质上是一个双层的ConcurrentHashMap,存储在内存中的。

第一层的key是spring.application.name,value是第二层ConcurrentHashMap;

第二层ConcurrentHashMap的key是服务的InstanceId,value是Lease对象;

Lease对象包含了服务详情和服务治理相关的属性。

二级缓存层

Eureka实现了二级缓存来保存即将要对外传输的服务信息,数据结构完全相同。

一级缓存:ConcurrentHashMap readOnlyCacheMap,本质上是HashMap,无过期时间,保存服务信息的对外输出数据结构。

二级缓存:Loading readWriteCacheMap,本质上是guava的缓存,包含失效机制,保存服务信息的对外输出数据结构。

既然是缓存,那必然要有更新机制,来保证数据的一致性。下面是缓存的更新机制:
image.png

更新机制包含删除和加载两个部分,上图黑色箭头表示删除缓存的动作,绿色表示加载或触发加载的动作。

删除二级缓存:

1、Eureka Client发送register、renew和cancel请求并更新registry注册表之后,删除二级缓存;

2、Eureka Server自身的Evict Task剔除服务后,删除二级缓存;

3、二级缓存本身设置了guava的失效机制,隔一段时间后自己自动失效;

加载二级缓存:

1、Eureka Client发送getRegistry请求后,如果二级缓存中没有,就触发guava的load,即从registry中获取原始服务信息后进行处理加工,再加载到二级缓存中。

2、Eureka Server更新一级缓存的时候,如果二级缓存没有数据,也会触发guava的load。

更新一级缓存:

1、Eureka Server内置了一个TimerTask,定时将二级缓存中的数据同步到一级缓存(这个动作包括了删除和加载)。

关于缓存的实现参考ResponseCacheImpl

服务注册机制

服务提供者、服务消费者、以及服务注册中心自己,启动后都会向注册中心注册服务(如果配置了注册)。下图是介绍如何完成服务注册的:

image.png

注册中心服务接收到register请求后:

1、保存服务信息,将服务信息保存到registry中;

2、更新队列,将此事件添加到更新队列中,供Eureka Client增量同步服务信息使用。

3、清空二级缓存,即readWriteCacheMap,用于保证数据的一致性。

4、更新阈值,供剔除服务使用。

5、同步服务信息,将此事件同步至其他的Eureka Server节点。

服务续约机制

服务注册后,要定时(默认30S,可自己配置)向注册中心发送续约请求,告诉注册中心“我还活着”。

image.png

注册中心收到续约请求后:

1、更新服务对象的最近续约时间,即Lease对象的lastUpdateTimestamp;

2、同步服务信息,将此事件同步至其他的Eureka Server节点。

剔除服务之前会先判断服务是否已经过期,判断服务是否过期的条件之一是续约时间和当前时间的差值是不是大于阈值。

服务注销机制

服务正常停止之前会向注册中心发送注销请求,告诉注册中心“我要下线了”。

image.png

注册中心服务接收到cancel请求后:

1、删除服务信息,将服务信息从registry中删除;

2、更新队列,将此事件添加到更新队列中,供Eureka Client增量同步服务信息使用。

3、清空二级缓存,即readWriteCacheMap,用于保证数据的一致性。

4、更新阈值,供剔除服务使用。

5、同步服务信息,将此事件同步至其他的Eureka Server节点。

服务正常停止才会发送Cancel,如果是非正常停止,则不会发送,此服务由Eureka Server主动剔除。

服务剔除机制

Eureka Server提供了服务剔除的机制,用于剔除没有正常下线的服务。

image.png

服务的剔除包括三个步骤,首先判断是否满足服务剔除的条件,然后找出过期的服务,最后执行剔除。

判断是否满足服务剔除的条件

有两种情况可以满足服务剔除的条件:

1、关闭了自我保护

2、如果开启了自我保护,需要进一步判断是Eureka Server出了问题,还是Eureka Client出了问题,如果是Eureka Client出了问题则进行剔除。

这里比较核心的条件是自我保护机制,Eureka自我保护机制是为了防止误杀服务而提供的一个机制。Eureka的自我保护机制“谦虚”的认为如果大量服务都续约失败,则认为是自己出问题了(如自己断网了),也就不剔除了;反之,则是Eureka Client的问题,需要进行剔除。而自我保护阈值是区分Eureka Client还是Eureka Server出问题的临界值:如果超出阈值就表示大量服务可用,少量服务不可用,则判定是Eureka Client出了问题。如果未超出阈值就表示大量服务不可用,则判定是Eureka Server出了问题。

条件1中如果关闭了自我保护,则统统认为是Eureka Client的问题,把没按时续约的服务都剔除掉(这里有剔除的最大值限制)。

这里比较难理解的是阈值的计算:

自我保护阈值 = 服务总数 每分钟续约数 自我保护阈值因子。

每分钟续约数 =(60S/客户端续约间隔)

最后自我保护阈值的计算公式为:

自我保护阈值 = 服务总数 (60S/客户端续约间隔) 自我保护阈值因子。

举例:如果有100个服务,续约间隔是30S,自我保护阈值0.85。

自我保护阈值=100 60 / 30 0.85 = 170。

如果上一分钟的续约数=180>170,则说明大量服务可用,是服务问题,进入剔除流程;

如果上一分钟的续约数=150<170,则说明大量服务不可用,是注册中心自己的问题,进入自我保护模式,不进入剔除流程。

找出过期的服务

遍历所有的服务,判断上次续约时间距离当前时间大于阈值就标记为过期。并将这些过期的服务保存到集合中。

剔除服务

在剔除服务之前先计算剔除的数量,然后遍历过期服务,通过洗牌算法确保每次都公平的选择出要剔除的任务,最后进行剔除。

执行剔除服务后:

1、删除服务信息,从registry中删除服务。

2、更新队列,将当前剔除事件保存到更新队列中。

3、清空二级缓存,保证数据的一致性。

实现过程参考AbstractInstanceRegistry.evict()方法。

服务获取机制

Eureka Client获取服务有两种方式,全量同步和增量同步。获取流程是根据Eureka Server的多层数据结构进行的:
image.png

无论是全量同步还是增量同步,都是先从缓存中获取,如果缓存中没有,则先加载到缓存中,再从缓存中获取。(registry只保存数据结构,缓存中保存ready的服务信息。)

1、先从一级缓存中获取

a> 先判断是否开启了一级缓存

b> 如果开启了则从一级缓存中获取,如果存在则返回,如果没有,则从二级缓存中获取

d> 如果未开启,则跳过一级缓存,从二级缓存中获取

2、再从二级缓存中获取

a> 如果二级缓存中存在,则直接返回;

b> 如果二级缓存中不存在,则先将数据加载到二级缓存中,再从二级缓存中获取。注意加载时需要判断是增量同步还是全量同步,增量同步从recentlyChangedQueue中load,全量同步从registry中load。

服务同步机制

服务同步机制是用来同步Eureka Server节点之间服务信息的。它包括Eureka Server启动时的同步,和运行过程中的同步。

启动时同步
image.png

Eureka Server启动后,遍历eurekaClient.getApplications获取服务信息,并将服务信息注册到自己的registry中。

注意这里是两层循环,第一层循环是为了保证已经拉取到服务信息,第二层循环是遍历拉取到的服务信息。

运行过程中同步
image.png

当Eureka Server节点有register、renew、cancel请求进来时,会将这个请求封装成TaskHolder放到acceptorQueue队列中,然后经过一系列的处理,放到batchWorkQueue中。

TaskExecutor.BatchWorkerRunnable是个线程池,不断的从batchWorkQueue队列中poll出TaskHolder,然后向其他Eureka Server节点发送同步请求。

这里省略了两个部分:

一个是在acceptorQueue向batchWorkQueue转化时,省略了中间的processingOrder和pendingTasks过程。

另一个是当同步失败时,会将失败的TaskHolder保存到reprocessQueue中,重试处理。

微服务注册中心对比

写在最后
对微服务解决方案Dubbo和Spring Cloud的对比非常多,这里对注册中心做个简单对比。

image.png

image.png

面试题:

Eureka与ZooKeeper对比

Eureka面试题

Eureka常见面试题

[

](https://blog.csdn.net/qwe86314/article/details/94552801)
[

](https://blog.csdn.net/qwe86314/article/details/94552801)