一次运行
## complete MSigDB module data_msigdb <- runMSigDB( data_gse, dir = "msigdb_out", prefix = "5-runMSigDB", top = 10)
分解动作
数据获取
data_msigdb <- msigdbGet(data_gse)
富集分析
## run Hyper of MSigDBdata_msigdb <- gseMSigDB(data_msigdb)## run GSEA of MSigDBdata_msigdb <- hyperMSigDB(data_msigdb)
GSVA
## run GSVAdata_msigdb <- gsvaResolve(data_msigdb)
结果整理
## summary results dir = "out_msigdb"prefix = "5-runMSigDB"top = 10MSigDBSummary(data_msigdb, dir = dir, prefix = prefix,top =top)
结果提取
GSVA分数矩阵
## score matrixgsvares <- msigdbGSVAresult(data_msigdb)[["GSVA_matrix"]][["H"]]pdf_file = "GSVA_heatmap.pdf"ac=data.frame(Groups=groupInfo(data_msigdb))rownames(ac)=sampleNames(data_msigdb,filtered = T)pheatmap::pheatmap(gsvares, annotation_col = ac, filename = pdf_file)
GSVA差异分析结果
## gsva deg resultsgsvadiff <- msigdbGSVAresult(data_msigdb)[["GSVA_diff"]][["H"]]volcano_file = "GSVA_volcano.pdf"p <- PointVolcano(object = data_msigdb,which = "MSigDB",category = "H",gene = 5,expend = c(0.4,0.4))ggplot2::ggsave(p,filename = volcano_file, width = 1600,height = 1600,units = "px",limitsize = FALSE,device = cairo_pdf)