教程

5.加权excel示例.png

  1. if(age<=19) Age_cnnic=1 .
  2. if(age>=20 & age<=29)Age_cnnic=2 .
  3. if(age>=30 & age<=39)Age_cnnic=3 .
  4. if(age>=40 & age<=49)Age_cnnic=4 .
  5. if(age>=50) Age_cnnic=5.
  6. exe.
  7. VARIABLE LABELS Age_cnnic '[Age_cnnic]年龄段'.
  8. Value Labels Age_cnnic
  9. 1 '<20'
  10. 2 '20-29'
  11. 3 '30-39'
  12. 4 '40-49'
  13. 5 '>49'
  14. .
  15. * 配比前数据结果.
  16. WEIGHT OFF.
  17. CTABLES
  18. /VLABELS VARIABLES=Z1 Age_cnnic DISPLAY=LABEL
  19. /TABLE Z1[C]>Age_cnnic[C][COUNT F40.0, LAYERPCT.COUNT PCT40.1]
  20. /CATEGORIES VARIABLES=Z1 Age_cnnic ORDER=A KEY=VALUE EMPTY=INCLUDE.
  21. *配比赋值.
  22. if(Z1=1 & Age_cnnic=1)peibi1=0.449588422980849.
  23. if(Z1=1 & Age_cnnic=2)peibi1=0.630263278899083.
  24. if(Z1=1 & Age_cnnic=3)peibi1=1.32837908333333.
  25. if(Z1=1 & Age_cnnic=4)peibi1=1.5039717309417.
  26. if(Z1=1 & Age_cnnic=5)peibi1=1.19639244660194.
  27. if(Z1=2 & Age_cnnic=1)peibi1=0.72293889010989.
  28. if(Z1=2 & Age_cnnic=2)peibi1=1.69798698522167.
  29. if(Z1=2 & Age_cnnic=3)peibi1=3.27135726530612.
  30. if(Z1=2 & Age_cnnic=4)peibi1=4.06476428169014.
  31. if(Z1=2 & Age_cnnic=5)peibi1=4.24250038095238.
  32. exe.
  33. VARIABLE LABELS peibi1 '【配比1】cnnic'.
  34. *样本配比加权.
  35. WEIGHT BY peibi1.
  36. exe.
  37. *配比后结果对比.
  38. CTABLES
  39. /VLABELS VARIABLES=Z1 Age_cnnic DISPLAY=LABEL
  40. /TABLE Z1[C]>Age_cnnic[C][COUNT F40.0, LAYERPCT.COUNT PCT40.1]
  41. /CATEGORIES VARIABLES=Z1 Age_cnnic ORDER=A KEY=VALUE EMPTY=INCLUDE.

数据转换、频次、平均数

  1. *数据转换,变量不变.
  2. RECODE str_user_sex ('女'='0') ('男'='1').
  3. EXECUTE.
  4. RECODE str_user_age ('0-18'='1') ('18-25'='2') ('25-30'='3') ('30-40'='4') ('40-50'='5') ('50-60'='6') ('60+'='7').
  5. EXECUTE.
  6. RECODE str_user_city ('一线城市'='1') ('二线城市'='2') ('三线城市'='3') ('四线城市'='4') ('五线城市'='5') ('未知'='0').
  7. EXECUTE.
  8. RECODE str_login_time ('近1周'='1') ('近1个月'='2') ('近3个月'='3') ('近6个月'='4') ('近1年'='5') ('1年以上'='6').
  9. EXECUTE.
  10. RECODE str_login_count ('1-3次'='1') ('4-10次'='2') ('11-50次'='3') ('超过50次'='4').
  11. EXECUTE.
  12. *芝麻分等级编码,编码为不同变量.
  13. RECODE credit_score (Lowest thru 549=1) (550 thru 599=2) (600 thru 649=3) (650 thru 699=4) (700 thru 749=5) (750 thru Highest=6) INTO 芝麻分等级.
  14. EXECUTE.
  15. *频次统计.
  16. FREQUENCIES VARIABLES=str_user_sex str_user_age str_user_city str_login_time str_login_count
  17. /HISTOGRAM NORMAL
  18. /ORDER=ANALYSIS.
  19. FREQUENCIES VARIABLES=芝麻分等级
  20. /ORDER=ANALYSIS.
  21. *平均数.
  22. FREQUENCIES VARIABLES=芝麻分等级
  23. /ORDER=ANALYSIS.