image.png
TPC/UDP是建立在IP上的协议

TCP和UDP

用户数据报协议 UDP(User Datagram Protocol):

  • UDP 在传送数据之前不需要先建立连接,远程主机在收到 UDP 报文后,不需要给出任何确认。
  • 虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有效的工作方式(一般用于即时通信),比如: QQ 语音、 QQ 视频 、直播等等

    传输控制协议 TCP(Transmission Control Protocol):

  • TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。

  • TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务(TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、流量控制、拥塞控制机制,在数据传完后,还会四次挥手断开连接用来节约系统资源),这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。
  • TCP 一般用于文件传输、发送和接收邮件、远程登录等场景

    TCP 报文段首部格式

    image.png

  • 源端口和目的端口:各占 2 个字节,分别写入源端口和目的端口。IP 地址 + 端口号就可以确定一个进程地址

  • 序号/序列号(Sequense Number,SN):在一个 TCP 连接中传送的字节流中的每一个字节都按顺序编号。该字段表示本报文段所发送的数据的第一个字节的序号。初始序号称为 Init Sequense Number, ISN(序号/序列号这个字段很重要,大家留个印象,下文会详细讲解)例如,一报文段的序号是 101,共有 100 字节的数据。这就表明:本报文段的数据的第一个字节的序号是 101,最后一个字节的序号是 200。显然,下一个报文段的数据序号应当从 201 开始,即下一个报文段的序号字段值应为 201。
  • 确认号 ack:期望收到对方下一个报文段的第一个数据字节的序号。若确认号为 N,则表明:到序号 N-1 为止的所有数据都已正确收到。
  • 数据偏移(首部长度):它指出 TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远。这个字段实际上是指出TCP报文段的首部长度。
  • 保留:占 6 位,应置为 0,保留为今后使用。
  • 紧急位 URG:当 URG = 1 时,表明此报文段中有紧急数据,是高优先级的数据,应尽快发送,不用在缓存中排队。该控制位需配合紧急指针使用(紧急指针指出本报文段中紧急数据的字节数)举个例子:我们需要取消一个已经发送了很长程序的运行,因此用户从键盘发出中断命令。如果不使用紧急数据,那么这个指令将存储在接收 TCP 的缓存末尾,只有在所有的数据被处理完毕后这两个字符才被交付接收方的应用进程,这样做就无法实现立即中断。
  • 确认 ACK:仅当 ACK = 1 时确认号字段才有效,当 ACK = 0 时确认号无效。TCP 规定,在连接建立后所有传送的报文段都必须把 ACK 置为 1。
  • 推送 PSH:当两个应用进程进行交互式的通信时,有时在一端的应用进程希望在键入一个命令后立即就能收到对方的响应。在这种情况下,TCP 就可以使用推送(push)操作。这时,发送方 TCP 把 PSH 置为 1,并立即创建一个报文段发送出去。接收方 TCP 收到 PSH = 1 的报文段,就尽快地交付接收应用进程。而不用等到整个缓存都填满了后再向上交付。
  • 复位 RST:当 RST = 1 时,表明 TCP 连接中出现了严重错误(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立传输连接。
  • 同步 SYN:SYN = 1 表示这是一个连接请求或连接接受报文。当 SYN = 1 而 ACK = 0 时,表明这是一个连接请求报文段。对方若同意建立连接,则应在响应的报文段中使 SYN = 1 且 ACK = 1。
  • 终止 FIN:用来释放一个连接。当 FIN = 1时,表明此报文段的发送发的数据已发送完毕,并要求释放运输连接。

TCP三次握手

image.png
image.png

  • SYN:连接请求/接收 报文段
  • seq:发送的第一个字节的序号
  • ACK:确认报文段
  • ack:确认号。希望收到的下一个数据的第一个字节的序号

1)第一次握手:客户端向服务端发送一个 SYN 报文(SYN = 1),并指明客户端的初始化序列号 ISN(x),即图中的 seq = x,表示本报文段所发送的数据的第一个字节的序号。此时客户端处于 SYN_Send 状态。
SYN-SENT :在发送连接请求后等待匹配的连接请求
2)第二次握手:服务器收到客户端的 SYN 报文之后,会发送 SYN 报文作为应答(SYN = 1),并且指定自己的初始化序列号 ISN(y),即图中的 seq = y。同时会把客户端的 ISN + 1 作为确认号 ack 的值,表示已经收到了客户端发来的的 SYN 报文,希望收到的下一个数据的第一个字节的序号是 x + 1,此时服务器处于 SYN_REVD 的状态。
SYN-RECEIVED:在收到和发送一个连接请求后等待对连接请求的确认
3)第三次握手:客户端收到服务器端响应的 SYN 报文之后,会发送一个 ACK 报文,也是一样把服务器的 ISN + 1 作为 ack 的值,表示已经收到了服务端发来的的 SYN 报文,希望收到的下一个数据的第一个字节的序号是 y + 1,并指明此时客户端的序列号 seq = x + 1(初始为 seq = x,所以第二个报文段要 +1),此时客户端处于 Establised 状态。
服务器收到 ACK 报文之后,也处于 Establised 状态,至此,双方建立起了 TCP 连接。
ESTABLISHED:代表一个打开的连接,数据可以传送给用户

为什么要三次握手

UDP 和 TCP 协议都是基于同样的互联网基础设施, 且都基于 IP 协议实现, 互联网基础设施中对于数据包的发送过程是会发生丢包现象的, 为什么 TCP 就可以实现可靠传输, 而 UDP 不行?

TCP 协议为了实现可靠传输, 通信双方需要判断自己已经发送的数据包是否都被接收方收到, 如果没收到, 就需要重发。 为了实现这个需求, 很自然地就会引出序号(sequence number) 和 确认号(acknowledgement number) 的使用。

发送方在发送数据包(假设大小为 10 byte)时, 同时送上一个序号( 假设为 500),那么接收方收到这个数据包以后, 就可以回复一个确认号(510 = 500 + 10) 告诉发送方 “我已经收到了你的数据包, 你可以发送下一个数据包, 序号从 510 开始” 。

这样发送方就可以知道哪些数据被接收到,哪些数据没被接收到, 需要重发。
[

](https://blog.csdn.net/lengxiao1993/article/details/82771768)

三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的
只有经过三次握手才能确认双发的收发功能都正常,缺一不可:

  • 第一次握手(客户端发送 SYN 报文给服务器,服务器接收该报文):客户端什么都不能确认;服务器确认了对方发送正常,自己接收正常
  • 第二次握手(服务器响应 SYN 报文给客户端,客户端接收该报文):客户端确认了:自己发送、接收正常,对方发送、接收正常;服务器确认了:对方发送正常,自己接收正常
  • 第三次握手(客户端发送 ACK 报文给服务器):客户端确认了:自己发送、接收正常,对方发送、接收正常;服务器确认了:自己发送、接收正常,对方发送、接收正常

ISN (Initial Sequence Number) 是固定的吗

三次握手的其中一个重要功能是客户端和服务端交换 ISN(Initial Sequence Number),以便让对方知道接下来接收数据的时候如何按序列号组装数据
当一端为建立连接而发送它的 SYN 时,它会为连接选择一个初始序号。ISN 随时间而变化,因此每个连接都将具有不同的 ISN。如果 ISN 是固定的,攻击者很容易猜出后续的确认号,因此 ISN 是动态生成的

为什么不能2次握手?

正如上文所描述的,为了实现可靠传输,发送方和接收方始终需要同步( SYNchronize )序号。 需要注意的是, 序号并不是从 0 开始的, 而是由发送方随机选择的初始序列号 ( Initial Sequence Number, ISN )开始 。 由于 TCP 是一个双向通信协议, 通信双方都有能力发送信息, 并接收响应。 因此, 通信双方都需要随机产生一个初始的序列号, 并且把这个起始值告诉对方。

于是, 这个过程就变成了下面这样。
image.png
image.png

四次挥手

建立一个 TCP 连接需要三次握手,而终止一个 TCP 连接要经过四次挥手(也有将四次挥手叫做四次握手的)。这是由于 TCP 的半关闭(half-close)特性造成的,TCP 提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力。
TCP 连接的释放需要发送四个包(执行四个步骤),因此称为四次挥手(Four-way handshake),客户端或服务端均可主动发起挥手动作
image.png
回顾一下上图中符号的意思:

  • FIN :连接终止位
  • seq:发送的第一个字节的序号
  • ACK:确认报文段
  • ack:确认号。希望收到的下一个数据的第一个字节的序号

刚开始双方都处于ESTABLISHED 状态,假设是客户端先发起关闭请求。四次挥手的过程如下:
1)第一次挥手:客户端发送一个 FIN 报文(请求连接终止:FIN = 1),报文中会指定一个序列号 seq = u。并停止再发送数据,主动关闭 TCP 连接。此时客户端处于 FIN_WAIT-1 状态,等待服务端的确认。
FIN-WAIT-1 - 等待远程TCP的连接中断请求,或先前的连接中断请求的确认;
2)第二次挥手:服务端收到 FIN 之后,会发送 ACK 报文,且把客户端的序号值 +1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT 状态。
CLOSE-WAIT - 等待从本地用户发来的连接中断请求;
此时的 TCP 处于半关闭状态,客户端到服务端的连接释放。客户端收到服务端的确认后,进入FIN_WAIT2(终止等待 2)状态,等待服务端发出的连接释放报文段。
FIN-WAIT-2 - 从远程TCP等待连接中断请求;
3)第三次挥手:如果服务端也想断开连接了(没有要向客户端发出的数据),和客户端的第一次挥手一样,发送 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态,等待客户端的确认。
LAST-ACK - 等待原来发向远程TCP的连接中断请求的确认;
4)第四次挥手:客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答(ack = w+1),且把服务端的序列值 +1 作为自己 ACK 报文的序号值(seq=u+1),此时客户端处于 TIME_WAIT (时间等待)状态
TIME-WAIT - 等待足够的时间以确保远程TCP接收到连接中断请求的确认;
🚨 注意 !!!这个时候由服务端到客户端的 TCP 连接并未释放掉,需要经过时间等待计时器设置的时间 2MSL(一个报文的来回时间) 后才会进入 CLOSED 状态(这样做的目的是确保服务端收到自己的 ACK 报文。如果服务端在规定时间内没有收到客户端发来的 ACK 报文的话,服务端会重新发送 FIN 报文给客户端,客户端再次收到 FIN 报文之后,就知道之前的 ACK 报文丢失了,然后再次发送 ACK 报文给服务端)。服务端收到 ACK 报文之后,就关闭连接了,处于 CLOSED 状态。

由于 TCP 的半关闭(half-close)特性,TCP 提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力。
任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了TCP连接。
通俗的来说,两次握手就可以释放一端到另一端的 TCP 连接,完全释放连接一共需要四次握手
举个例子:A 和 B 打电话,通话即将结束后,A 说 “我没啥要说的了”,B 回答 “我知道了”,于是 A 向 B 的连接释放了。但是 B 可能还会有要说的话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,于是 B 向 A 的连接释放了,这样整个通话就结束了。

TCP为什么要这么做?明明就已经主动关闭连接了为啥还要保持资源一段时间呢?这个是TCP/IP的设计者规定 的,主要出于以下两个方面的考虑:

  1. 收到ack,但是迷路回包的情况: 防止上一次连接中的包,迷路后重新出现,影响干扰新连接(经过2MSL,上一次连接中所有的重复包都会消失)

2. ack丢失的情况: 在主动关闭方发送的最后一个 ack(fin) ,有可能丢失。这时候对方(被动方)会重新发fin, 如果这时主动方处于 CLOSED 状态 ,就会响应 rst 而不是 ack。所以主动方要处于 TIME_WAIT 状态,而不能是 CLOSED 。另外这么设计TIME_WAIT 会定时的回收资源,并不会占用很大资源的,除非短时间内接受大量请求或者受到攻击。

UDP

1、UDP是一个非连接的协议,传输数据之前源端和终端不建立连接, 当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。 在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、 计算机的能力和传输带宽的限制; 在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。
2、 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等, 因此一台服务机可同时向多个客户机传输相同的消息。
3、UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。
4、吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、 源端和终端主机性能的限制。
5、UDP使用尽最大努力交付,即不保证可靠交付, 因此主机不需要维持复杂的链接状态表(这里面有许多参数)。
6、UDP是面向报文的。发送方的UDP对应用程序交下来的报文, 在添加首部后就向下交付给IP层。既不拆分

小结TCP与UDP的区别:

1、基于连接与无连接;
2、对系统资源的要求(TCP较多,UDP少);
3、UDP程序结构较简单;
4、流模式与数据报模式 ;
5、TCP保证数据正确性,UDP可能丢包;
6、TCP保证数据顺序,UDP不保证。