import 模块
from __future__ import print_function
将 future 看做是一个 Python 专门存放新特性的模块
import print_function 之后,在 Python2.x 中也需要使用 Python3.x 的 print() 来输出
import torchimport torchvisionimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimimport matplotlib.pyplot as pltimport numpy as npfrom torchvision import datasets, transformsfrom torch.utils.data import Dataset, DataLoader
- 引入
root package - The
torchvisionpackage consists of popular datasets, model architectures, and common image transformations for computer visiontorchvision.datasets: MNIST, CIFAR, etc.torchvision.transforms:torchvision.transformsare common image transformations. They can be chained together usingtorchvision.transforms.Compose(transforms).
torch.nn神经网络工具箱(layer是由class定义) : Conv2d, MaxPool2d, etc.torch.nn.functional与torch.nn相似,但它的layer由def定义。- 引入 optimizer
- 引入绘图模块
- 引入
numpy模块 - 引入图片转换模块
- 引入数据模块
torch.utils.data.Dataset是数据集的抽象类,所有的torchvision.datasets都是torch.utils.data.Dataset的子类。
torch.nn.functional是确定不变的运算公式,如果模型有可学习的参数,最好使用torch.nn中nn.Module对应的相关layer。比如Relu其实没有可学习的参数,只是进行一个运算而已,所以使用的就是functional中的relu函数,而卷积层和全连接层都有可学习的参数,所以用的是nn.Module中的类。
数据处理
batch_size = 4epoch_size = 3
# 对数据进行预处理transform = transforms.Compose([transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]transforms.Normalize((0.5, 0.5, 0.5), # 以均值和标准差进行标准化(C=3)(0.5, 0.5, 0.5))])trainset = datasets.CIFAR10(root='./data/cifar10', # 相对目录train=True, # True 则为训练集download=True, # 目录中数据集不存在则下载transform=transform)trainloader = DataLoader(trainset,batch_size=batch_size,shuffle=True, # 将数据打乱num_workers=0) # 进程数testset = datasets.CIFAR10(root='./data/cifar10',train=False,download=True,transform=transform)testloader = DataLoader(testset,batch_size=batch_size,shuffle=False,num_workers=0)classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Files already downloaded and verifiedFiles already downloaded and verified
torchvision.transforms 中的函数
- Resize:把给定的图片resize到given size
- Normalize:Normalized an tensor image with mean and standard deviation
- ToTensor:convert a PIL image to tensor (HWC) in range [0,255] to a torch.Tensor(CHW) in the range [0.0,1.0]
- ToPILImage: convert a tensor to PIL image
- Scale:目前已经不用了,推荐用Resize
- CenterCrop:在图片的中间区域进行裁剪
- RandomCrop:在一个随机的位置进行裁剪
- RandomHorizontalFlip:以0.5的概率水平翻转给定的PIL图像
- RandomVerticalFlip:以0.5的概率竖直翻转给定的PIL图像
- RandomResizedCrop:将PIL图像裁剪成任意大小和纵横比
- Grayscale:将图像转换为灰度图像
- RandomGrayscale:将图像以一定的概率转换为灰度图像
- FiceCrop:把图像裁剪为四个角和一个中心
- TenCrop
- Pad:填充
- ColorJitter:随机改变图像的亮度对比度和饱和度
def imshow(img):img = img / 2 + 0.5 # 去标准化npimg = img.numpy() # 将torch.FloatTensor 转换为numpy# plt.axis("off") # 不显示坐标尺寸plt.imshow(np.transpose(npimg, (1, 2, 0))) # 进行转置plt.show() # 显示图片# get some random training imagesdataiter = iter(trainloader)images, labels = dataiter.next()# show imagesimshow(torchvision.utils.make_grid(images))# print labelsprint(' '.join('%11s' % classes[labels[j]] for j in range(batch_size)))

bird frog horse truck
错误:
[Errno 32] Broken pipe
原因:
trainloader = DataLoader(trainset,batch_size=batch_size,shuffle=True, # 将数据打乱num_workers=2) # 进程数
方法:
设置 num_workers = 0
numpy.transpose 说明
如果 x = np.arange(24).reshape((2, 3, 4))(维度/通道为 2,行数为 3,列数为 4),
对 x 按照某一顺序进行转置(numpy.transpose):
np.transpose(x, (2, 0, 1)): shape(2,3,4) -> shape(4,2,3)np.transpose(x, (0, 1, 2)): shape(2,3,4) -> shape(2,3,4)
查看列表的维度
np.array(images).shape #(batch_size, C, H, W)
(4, 3, 32, 32)
定义网络结构
class Net(nn.Module): # nn.Module 是所有神经网络的基类,自定义的网络应该继承自它def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")net = Net().to(device)
# 定义损失函数和优化器criterion = nn.CrossEntropyLoss() # 交叉熵损失optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # SGD with momentum
训练
import osif os.path.exists('./model/learn0.pt'):net.load_state_dict(torch.load('./model/learn0.pt'))net.eval()else:for epoch in range(epoch_size): # loop over the dataset multiple timesrunning_loss = 0.0for i, data in enumerate(trainloader, 0):# get the inputs; data is a list of [inputs, labels]inputs, labels = inputs, labels = data[0].to(device), data[1].to(device)# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()if i % 2000 == 1999: # print every 2000 mini-batchesprint('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 2000))running_loss = 0.0print('Finished Training')
# tensorboardfrom torch.autograd import Variablefrom tensorboardX import SummaryWriterdumpy_input = Variable(torch.rand(1,3 ,32 ,32 ))with SummaryWriter('runs/learn-0/') as W:W.add_graph(net,(dumpy_input,))import torchimport torchvisionfrom tensorboardX import SummaryWriterfrom torchvision import datasets, transforms# Writer will output to ./runs/ directory by defaultwriter = SummaryWriter('runs/unimportant/')transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])trainset = datasets.MNIST('mnist_train', train=True, download=True, transform=transform)trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)model = torchvision.models.resnet50(False)# Have ResNet model take in grayscale rather than RGBmodel.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)images, labels = next(iter(trainloader))grid = torchvision.utils.make_grid(images)writer.add_image('images', grid, 0)writer.add_graph(model, images)writer.close()
测试
# 测试集准备dataiter = iter(testloader)images, labels = dataiter.next()# print imagesprint('GroundTruth:')imshow(torchvision.utils.make_grid(images))print(' '.join('%11s' % classes[labels[j]] for j in range(4)))# 测试一次outputs = net(images.to(device))_, predicted = torch.max(outputs, 1)print('Predicted:\n', ' '.join('%11s' % classes[predicted[j]]for j in range(4)))# 在整个测试集上测试correct = 0total = 0with torch.no_grad(): # 不进行梯度计算,减小了内存的占用,一般此时不进行BP的计算for data in testloader:images, labels = data[0].to(device),data[1].to(device)outputs = net(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy of the network on the %d test images: %d %%' % (batch_size*len(testloader),100 * correct / total))
GroundTruth:

cat ship ship planePredicted:cat ship ship planeAccuracy of the network on the 10000 test images: 57 %
# 模型对各个class分类的表现class_correct = list(0. for i in range(10))class_total = list(0. for i in range(10))with torch.no_grad():for data in testloader:images, labels = data[0].to(device), data[1].to(device)outputs = net(images)_, predicted = torch.max(outputs, 1) # _ 表示不重要,可直接取[1]赋值c = (predicted == labels).squeeze()for i in range(4):label = labels[i]class_correct[label] += c[i].item()class_total[label] += 1for i in range(10):print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
Accuracy of plane : 62 %Accuracy of car : 68 %Accuracy of bird : 51 %Accuracy of cat : 39 %Accuracy of deer : 51 %Accuracy of dog : 40 %Accuracy of frog : 62 %Accuracy of horse : 52 %Accuracy of ship : 80 %Accuracy of truck : 62 %
可视化
BUG
- 必须先安装软件
graphviz整个流程才可以继续下去 - 安装软件 -> 添加环境变量 -> pip install package
- 因为需要添加环境变量,所以添加完之后要关闭打开
notebook的 cmd 窗口,重新启动才能 work。
import tensorwatch as tw# from torchviz import make_dottw.draw_model(net.to('cpu'),[1,3,32,32])
模型保存与读取
# 模型保存torch.save(net.state_dict(),'./model/learn0.pt')
# 模型读取model = Net().to('cuda')model.load_state_dict(torch.load('./model/learn0.pt'))model.eval()
变量测试
# 测试 python# help(torch.no_grad)# print(torch.cuda.device_count())print(net.parameters())
# 测试 shell!nvidia-smi
格式转换
# !jupyter nbconvert --to html --template full learn.ipynb# !jupyter nbconvert --to markdown learn.ipynb!jupyter nbconvert --to html --template full learn-0.ipynb!jupyter nbconvert --to markdown learn-0.ipynb
