Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.
In this exercise you will:
- implement a fully-vectorized loss function for the SVM
- implement the fully-vectorized expression for its analytic gradient
- check your implementation using numerical gradient
- use a validation set to tune the learning rate and regularization strength
- optimize the loss function with SGD
- visualize the final learned weights
# Run some setup code for this notebook.
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
# This is a bit of magic to make matplotlib figures appear inline in the
# notebook rather than in a new window.
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# Some more magic so that the notebook will reload external python modules;
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
CIFAR-10 Data Loading and Preprocessing
# Load the raw CIFAR-10 data.
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
# Cleaning up variables to prevent loading data multiple times (which may cause memory issue)
try:
del X_train, y_train
del X_test, y_test
print('Clear previously loaded data.')
except:
pass
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
Clear previously loaded data.
Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
idxs = np.flatnonzero(y_train == y)
idxs = np.random.choice(idxs, samples_per_class, replace=False)
for i, idx in enumerate(idxs):
plt_idx = i * num_classes + y + 1
plt.subplot(samples_per_class, num_classes, plt_idx)
plt.imshow(X_train[idx].astype('uint8'))
plt.axis('off')
if i == 0:
plt.title(cls)
plt.show()
# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500
# Our validation set will be num_validation points from the original
# training set.
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
# Our training set will be the first num_train points from the original
# training set.
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
# We will also make a development set, which is a small subset of
# the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]
# We use the first num_test points of the original test set as our
# test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
Train data shape: (49000, 32, 32, 3)
Train labels shape: (49000,)
Validation data shape: (1000, 32, 32, 3)
Validation labels shape: (1000,)
Test data shape: (1000, 32, 32, 3)
Test labels shape: (1000,)
# Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
# As a sanity check, print out the shapes of the data
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)
Training data shape: (49000, 3072)
Validation data shape: (1000, 3072)
Test data shape: (1000, 3072)
dev data shape: (500, 3072)
# Preprocessing: subtract the mean image
# first: compute the image mean based on the training data
mean_image = np.mean(X_train, axis=0)
print(mean_image[:10]) # print a few of the elements
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()
# second: subtract the mean image from train and test data
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image
# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
[130.64189796 135.98173469 132.47391837 130.05569388 135.34804082
131.75402041 130.96055102 136.14328571 132.47636735 131.48467347]
(49000, 3073) (1000, 3073) (1000, 3073) (500, 3073)
SVM Classifier
Your code for this section will all be written inside cs231n/classifiers/linear_svm.py.
As you can see, we have prefilled the function compute_loss_naive
which uses for loops to evaluate the multiclass SVM loss function.
# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time
# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, ))
print('shape of grad: ',grad.shape)
loss: 8.702263
shape of grad: (3073, 10)
The grad
returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive
. You will find it helpful to interleave your new code inside the existing function.
To check that you have correctly implemented the gradient correctly, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you:
# Once you've implemented the gradient, recompute it with the code below
# and gradient check it with the function we provided for you
# Compute the loss and its gradient at W.
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)
# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)
# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad)
numerical: -2.097039 analytic: -2.097039, relative error: 1.632850e-12
numerical: -13.150595 analytic: -13.150595, relative error: 8.383147e-12
numerical: 35.293383 analytic: 35.293383, relative error: 1.306768e-11
numerical: 11.074474 analytic: 11.074474, relative error: 2.002911e-11
numerical: 9.746951 analytic: 9.746951, relative error: 1.532373e-11
numerical: -0.897797 analytic: -0.897797, relative error: 1.196728e-11
numerical: -7.943663 analytic: -7.943663, relative error: 2.130405e-11
numerical: -16.034647 analytic: -16.034647, relative error: 1.573243e-11
numerical: 8.443374 analytic: 8.443374, relative error: 1.431563e-11
numerical: -3.365248 analytic: -3.365248, relative error: 1.020220e-10
numerical: -18.147710 analytic: -18.147710, relative error: 6.067783e-13
numerical: -11.426479 analytic: -11.426479, relative error: 6.281970e-12
numerical: -3.141528 analytic: -3.141528, relative error: 1.164299e-10
numerical: 0.282185 analytic: 0.282185, relative error: 7.727437e-10
numerical: -10.892570 analytic: -10.892570, relative error: 7.020010e-12
numerical: -3.616890 analytic: -3.616890, relative error: 2.809321e-11
numerical: -30.501798 analytic: -30.501798, relative error: 3.546797e-12
numerical: -9.108684 analytic: -9.108684, relative error: 3.362022e-11
numerical: 8.114566 analytic: 8.114566, relative error: 1.355445e-11
numerical: 12.924950 analytic: 12.924950, relative error: 2.482065e-11
Inline Question 1
It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? How would change the margin affect of the frequency of this happening? Hint: the SVM loss function is not strictly speaking differentiable
# Next implement the function svm_loss_vectorized; for now only compute the loss;
# we will implement the gradient in a moment.
tic = time.time()
loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss: %e computed in %fs' % (loss_naive, toc - tic))
from cs231n.classifiers.linear_svm import svm_loss_vectorized
tic = time.time()
loss_vectorized, _ = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))
# The losses should match but your vectorized implementation should be much faster.
print('difference: %f' % (loss_naive - loss_vectorized))
Naive loss: 8.702263e+00 computed in 0.078789s
Vectorized loss: 8.702263e+00 computed in 0.007735s
difference: -0.000000
# Complete the implementation of svm_loss_vectorized, and compute the gradient
# of the loss function in a vectorized way.
# The naive implementation and the vectorized implementation should match, but
# the vectorized version should still be much faster.
tic = time.time()
_, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss and gradient: computed in %fs' % (toc - tic))
tic = time.time()
_, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss and gradient: computed in %fs' % (toc - tic))
# The loss is a single number, so it is easy to compare the values computed
# by the two implementations. The gradient on the other hand is a matrix, so
# we use the Frobenius norm to compare them.
difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('difference: %f' % difference)
Naive loss and gradient: computed in 0.088396s
Vectorized loss and gradient: computed in 0.004990s
difference: 0.000000
Stochastic Gradient Descent
We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss.
# In the file linear_classifier.py, implement SGD in the function
# LinearClassifier.train() and then run it with the code below.
from cs231n.classifiers import LinearSVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4,
num_iters=1500, verbose=True)
toc = time.time()
print('That took %fs' % (toc - tic))
iteration 0 / 1500: loss 780.845025
iteration 100 / 1500: loss 284.218950
iteration 200 / 1500: loss 107.290724
iteration 300 / 1500: loss 42.352389
iteration 400 / 1500: loss 18.537910
iteration 500 / 1500: loss 10.759981
iteration 600 / 1500: loss 6.869571
iteration 700 / 1500: loss 6.355614
iteration 800 / 1500: loss 5.903678
iteration 900 / 1500: loss 5.378417
iteration 1000 / 1500: loss 5.844359
iteration 1100 / 1500: loss 5.279668
iteration 1200 / 1500: loss 5.036227
iteration 1300 / 1500: loss 5.161794
iteration 1400 / 1500: loss 4.938430
That took 16.796489s
# A useful debugging strategy is to plot the loss as a function of
# iteration number:
plt.plot(loss_hist)
plt.xlabel('Iteration number')
plt.ylabel('Loss value')
plt.show()
# Write the LinearSVM.predict function and evaluate the performance on both the
# training and validation set
y_train_pred = svm.predict(X_train)
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val)
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))
training accuracy: 0.367388
validation accuracy: 0.370000
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.39 on the validation set.
# Note: you may see runtime/overflow warnings during hyper-parameter search.
# This may be caused by extreme values, and is not a bug.
from cs231n.classifiers import LinearSVM
learning_rates = np.linspace(1e-6,1e-8,5)
regularization_strengths = np.linspace(4.5e4,5.5e4,5)
# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1 # The highest validation accuracy that we have seen so far.
# The LinearSVM object that achieved the highest validation rate.
best_svm = None
################################################################################
# TODO: #
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the #
# training set, compute its accuracy on the training and validation sets, and #
# store these numbers in the results dictionary. In addition, store the best #
# validation accuracy in best_val and the LinearSVM object that achieves this #
# accuracy in best_svm. #
# #
# Hint: You should use a small value for num_iters as you develop your #
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation #
# code with a larger value for num_iters. #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
svm = LinearSVM()
acc_temp = 0
for lr in learning_rates:
for reg in regularization_strengths:
svm.train(X_train, y_train, learning_rate=lr, reg=reg,
num_iters=150, verbose=True)
train_acc = np.mean(y_train == svm.predict(X_train))
val_acc = np.mean(y_val == svm.predict(X_val))
results[(lr, reg)] = (train_acc, val_acc)
if val_acc > acc_temp:
best_val = val_acc
acc_temp = best_val
best_svm = svm
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %.2f val accuracy: %.2f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
iteration 0 / 150: loss 1396.757584
iteration 100 / 150: loss 7.978646
iteration 0 / 150: loss 7.074112
iteration 100 / 150: loss 6.814321
iteration 0 / 150: loss 6.906133
iteration 100 / 150: loss 6.113737
iteration 0 / 150: loss 6.380821
iteration 100 / 150: loss 6.100835
iteration 0 / 150: loss 6.743149
iteration 100 / 150: loss 7.828594
iteration 0 / 150: loss 7.270202
iteration 100 / 150: loss 6.695549
iteration 0 / 150: loss 5.911166
iteration 100 / 150: loss 6.497495
iteration 0 / 150: loss 6.323286
iteration 100 / 150: loss 6.402935
iteration 0 / 150: loss 6.360113
iteration 100 / 150: loss 6.215709
iteration 0 / 150: loss 6.329384
iteration 100 / 150: loss 6.792598
iteration 0 / 150: loss 7.810835
iteration 100 / 150: loss 6.215014
iteration 0 / 150: loss 6.047842
iteration 100 / 150: loss 6.189011
iteration 0 / 150: loss 5.712657
iteration 100 / 150: loss 6.202888
iteration 0 / 150: loss 6.219806
iteration 100 / 150: loss 6.846721
iteration 0 / 150: loss 5.953943
iteration 100 / 150: loss 5.950440
iteration 0 / 150: loss 5.930696
iteration 100 / 150: loss 5.878044
iteration 0 / 150: loss 5.672647
iteration 100 / 150: loss 5.687492
iteration 0 / 150: loss 5.630673
iteration 100 / 150: loss 6.361494
iteration 0 / 150: loss 5.624344
iteration 100 / 150: loss 5.781926
iteration 0 / 150: loss 5.934599
iteration 100 / 150: loss 5.907119
iteration 0 / 150: loss 6.388585
iteration 100 / 150: loss 6.015466
iteration 0 / 150: loss 6.002802
iteration 100 / 150: loss 5.679754
iteration 0 / 150: loss 5.205385
iteration 100 / 150: loss 5.423794
iteration 0 / 150: loss 5.784023
iteration 100 / 150: loss 5.535814
iteration 0 / 150: loss 5.612699
iteration 100 / 150: loss 6.147560
lr 1.000000e-08 reg 4.500000e+04 train accuracy: 0.36 val accuracy: 0.37
lr 1.000000e-08 reg 4.750000e+04 train accuracy: 0.36 val accuracy: 0.38
lr 1.000000e-08 reg 5.000000e+04 train accuracy: 0.36 val accuracy: 0.37
lr 1.000000e-08 reg 5.250000e+04 train accuracy: 0.36 val accuracy: 0.37
lr 1.000000e-08 reg 5.500000e+04 train accuracy: 0.36 val accuracy: 0.37
lr 2.575000e-07 reg 4.500000e+04 train accuracy: 0.35 val accuracy: 0.34
lr 2.575000e-07 reg 4.750000e+04 train accuracy: 0.35 val accuracy: 0.37
lr 2.575000e-07 reg 5.000000e+04 train accuracy: 0.34 val accuracy: 0.36
lr 2.575000e-07 reg 5.250000e+04 train accuracy: 0.34 val accuracy: 0.35
lr 2.575000e-07 reg 5.500000e+04 train accuracy: 0.34 val accuracy: 0.37
lr 5.050000e-07 reg 4.500000e+04 train accuracy: 0.32 val accuracy: 0.33
lr 5.050000e-07 reg 4.750000e+04 train accuracy: 0.33 val accuracy: 0.32
lr 5.050000e-07 reg 5.000000e+04 train accuracy: 0.32 val accuracy: 0.34
lr 5.050000e-07 reg 5.250000e+04 train accuracy: 0.32 val accuracy: 0.31
lr 5.050000e-07 reg 5.500000e+04 train accuracy: 0.31 val accuracy: 0.33
lr 7.525000e-07 reg 4.500000e+04 train accuracy: 0.29 val accuracy: 0.31
lr 7.525000e-07 reg 4.750000e+04 train accuracy: 0.31 val accuracy: 0.34
lr 7.525000e-07 reg 5.000000e+04 train accuracy: 0.27 val accuracy: 0.28
lr 7.525000e-07 reg 5.250000e+04 train accuracy: 0.29 val accuracy: 0.31
lr 7.525000e-07 reg 5.500000e+04 train accuracy: 0.27 val accuracy: 0.28
lr 1.000000e-06 reg 4.500000e+04 train accuracy: 0.28 val accuracy: 0.29
lr 1.000000e-06 reg 4.750000e+04 train accuracy: 0.27 val accuracy: 0.28
lr 1.000000e-06 reg 5.000000e+04 train accuracy: 0.26 val accuracy: 0.25
lr 1.000000e-06 reg 5.250000e+04 train accuracy: 0.29 val accuracy: 0.28
lr 1.000000e-06 reg 5.500000e+04 train accuracy: 0.26 val accuracy: 0.27
best validation accuracy achieved during cross-validation: 0.377000
# Visualize the cross-validation results
import math
x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]
# plot training accuracy
marker_size = 100
colors = [results[x][0] for x in results]
plt.subplot(2, 1, 1)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 training accuracy')
# plot validation accuracy
colors = [results[x][1] for x in results] # default size of markers is 20
plt.subplot(2, 1, 2)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 validation accuracy')
plt.show()
# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)
linear SVM on raw pixels final test set accuracy: 0.361000
# Visualize the learned weights for each class.
# Depending on your choice of learning rate and regularization strength, these may
# or may not be nice to look at.
w = best_svm.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
plt.subplot(2, 5, i + 1)
# Rescale the weights to be between 0 and 255
wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
plt.imshow(wimg.astype('uint8'))
plt.axis('off')
plt.title(classes[i])
Inline question 2
Describe what your visualized SVM weights look like, and offer a brief explanation for why they look they way that they do.
!jupyter nbconvert --to markdown svm.ipynb
[NbConvertApp] Converting notebook svm.ipynb to markdown
[NbConvertApp] Support files will be in svm_files\
[NbConvertApp] Making directory svm_files
[NbConvertApp] Making directory svm_files
[NbConvertApp] Making directory svm_files
[NbConvertApp] Making directory svm_files
[NbConvertApp] Making directory svm_files
[NbConvertApp] Writing 23693 bytes to svm.md