best-fields换成most-fields策略
    best-fields策略,主要是说将某一个field匹配尽可能多的关键词的doc优先返回回来
    most-fields策略,主要是说尽可能返回更多field匹配到某个关键词的doc,优先返回回来

    1. POST /forum/_mapping
    2. {
    3. "properties": {
    4. "sub_title": {
    5. "type": "string",
    6. "analyzer": "english",
    7. "fields": {
    8. "std": {
    9. "type": "string",
    10. "analyzer": "standard"
    11. }
    12. }
    13. }
    14. }
    15. }
    POST /forum/_mapping
    {
      "properties": {
        "sub_title": {
          "type": "text",
          "analyzer": "english",
          "fields": {
            "std": {
              "type": "text",
              "analyzer": "standard"
            }
          }
        }
      }
    }
    
    POST /forum/_bulk
    { "update": { "_id": "1"} }
    { "doc" : {"sub_title" : "learning more courses"} }
    { "update": { "_id": "2"} }
    { "doc" : {"sub_title" : "learned a lot of course"} }
    { "update": { "_id": "3"} }
    { "doc" : {"sub_title" : "we have a lot of fun"} }
    { "update": { "_id": "4"} }
    { "doc" : {"sub_title" : "both of them are good"} }
    { "update": { "_id": "5"} }
    { "doc" : {"sub_title" : "haha, hello world"} }
    { "update": { "_id": "6"} }
    { "doc" : {"sub_title" : "learn java"} }
    { "update": { "_id": "7"} }
    { "doc" : {"sub_title" : "learned a lot of hadoop"} }
    { "update": { "_id": "8"} }
    { "doc" : {"sub_title" : "learning of flink"} }
    { "update": { "_id": "9"} }
    { "doc" : {"sub_title" : "the spark is good bigdata tool"} }
    { "update": { "_id": "10"} }
    { "doc" : {"sub_title" : "haha, hello world"} }
    { "update": { "_id": "11"} }
    { "doc" : {"sub_title" : "flink, hello world"} }
    
    GET /forum/_search
    {
      "query": {
        "match": {
          "sub_title": "learning courses"
        }
      }
    }
    
    {
      "took": 3,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 2,
        "max_score": 1.219939,
        "hits": [
          {
            "_index": "forum",
            "_type": "article",
            "_id": "2",
            "_score": 1.219939,
            "_source": {
              "articleID": "KDKE-B-9947-#kL5",
              "userID": 1,
              "hidden": false,
              "postDate": "2017-01-02",
              "tag": [
                "java"
              ],
              "tag_cnt": 1,
              "view_cnt": 50,
              "title": "this is java blog",
              "content": "i think java is the best programming language",
              "sub_title": "learned a lot of course"
            }
          },
          {
            "_index": "forum",
            "_type": "article",
            "_id": "1",
            "_score": 0.5063205,
            "_source": {
              "articleID": "XHDK-A-1293-#fJ3",
              "userID": 1,
              "hidden": false,
              "postDate": "2017-01-01",
              "tag": [
                "java",
                "hadoop"
              ],
              "tag_cnt": 2,
              "view_cnt": 30,
              "title": "this is java and elasticsearch blog",
              "content": "i like to write best elasticsearch article",
              "sub_title": "learning more courses"
            }
          }
        ]
      }
    }
    

    sub_title用的是enligsh analyzer,所以还原了单词
    为什么,因为如果我们用的是类似于english analyzer这种分词器的话,就会将单词还原为其最基本的形态,stemmer

    learning --> learn
    learned --> learn
    courses --> course
    
    sub_titile: learning coureses --> learn course
    

    { "doc" : {"sub_title" : "learned a lot of course"} },就排在了{ "doc" : {"sub_title" : "learning more courses"} }的前面

    GET /forum/_search
    {
       "query": {
            "match": {
                "sub_title": "learning courses"
            }
        }
    }
    
    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : 2.3487744,
        "hits" : [
          {
            "_index" : "forum",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 2.3487744,
            "_source" : {
              "articleID" : "XHDK-A-1293-#fJ3",
              "userID" : 1,
              "hidden" : false,
              "postDate" : "2017-01-01",
              "tag" : [
                "java",
                "hadoop"
              ],
              "tag_cnt" : 2,
              "view_cnt" : 30,
              "title" : "this is java and hadoop blog",
              "content" : "i like to write best elasticsearch article",
              "sub_title" : "learning more courses"
            }
          },
          {
            "_index" : "forum",
            "_type" : "_doc",
            "_id" : "2",
            "_score" : 2.3487744,
            "_source" : {
              "articleID" : "KDKE-B-9947-#kL5",
              "userID" : 1,
              "hidden" : false,
              "postDate" : "2017-01-02",
              "tag" : [
                "java"
              ],
              "tag_cnt" : 1,
              "view_cnt" : 50,
              "title" : "this is java blog",
              "content" : "i think java is the best programming language",
              "sub_title" : "learned a lot of course"
            }
          }
        ]
      }
    }
    

    在 ES7.x 是{ "doc" : {"sub_title" : "learning more courses"} },就排在了{ "doc" : {"sub_title" : "learned a lot of course"} }的前面,应该是 ES7.x 对分词做了优化,搜索的更加的进准


    GET /forum/_search
    {
       "query": {
            "multi_match": {
                "query":  "learning courses",
                "type":   "most_fields", 
                "fields": [ "sub_title", "sub_title.std" ]
            }
        }
    }
    
    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : 6.4124336,
        "hits" : [
          {
            "_index" : "forum",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 6.4124336,
            "_source" : {
              "articleID" : "XHDK-A-1293-#fJ3",
              "userID" : 1,
              "hidden" : false,
              "postDate" : "2017-01-01",
              "tag" : [
                "java",
                "hadoop"
              ],
              "tag_cnt" : 2,
              "view_cnt" : 30,
              "title" : "this is java and hadoop blog",
              "content" : "i like to write best elasticsearch article",
              "sub_title" : "learning more courses"
            }
          },
          {
            "_index" : "forum",
            "_type" : "_doc",
            "_id" : "8",
            "_score" : 2.6506605,
            "_source" : {
              "articleID" : "QQPX-R-3956-#aD0",
              "userID" : 5,
              "hidden" : true,
              "postDate" : "2019-06-02",
              "tag" : [
                "spark",
                "elasticsearch",
                "flink"
              ],
              "tag_cnt" : 7,
              "view_cnt" : 80,
              "title" : "this is spark, elasticsearch, flink blog",
              "content" : "i am only an elasticsearch beginner",
              "sub_title" : "learning of flink"
            }
          },
          {
            "_index" : "forum",
            "_type" : "_doc",
            "_id" : "2",
            "_score" : 2.3487744,
            "_source" : {
              "articleID" : "KDKE-B-9947-#kL5",
              "userID" : 1,
              "hidden" : false,
              "postDate" : "2017-01-02",
              "tag" : [
                "java"
              ],
              "tag_cnt" : 1,
              "view_cnt" : 50,
              "title" : "this is java blog",
              "content" : "i think java is the best programming language",
              "sub_title" : "learned a lot of course"
            }
          }
        ]
      }
    }
    

    你问我,具体的分数怎么算出来的,很难说,因为这个东西很复杂, 还不只是TF/IDF算法。因为不同的query,不同的语法,都有不同的计算score的细节。
    best_fields的区别
    (1)best_fields,是对多个field进行搜索,挑选某个field匹配度最高的那个分数,同时在多个query最高分相同的情况下,在一定程度上考虑其他query的分数。简单来说,你对多个field进行搜索,就想搜索到某一个field尽可能包含更多关键字的数据

    • 优点:通过best_fields策略,以及综合考虑其他field,还有minimum_should_match支持,可以尽可能精准地将匹配的结果推送到最前面
    • 缺点:除了那些精准匹配的结果,其他差不多大的结果,排序结果不是太均匀,没有什么区分度了

    实际的例子:百度之类的搜索引擎,最匹配的到最前面,但是其他的就没什么区分度了
    (2)most_fields,综合多个field一起进行搜索,尽可能多地让所有fieldquery参与到总分数的计算中来,此时就会是个大杂烩,出现类似best_fields案例最开始的那个结果,结果不一定精准,某一个document的一个field包含更多的关键字,但是因为其他document有更多field匹配到了,所以排在了前面;所以需要建立类似sub_title.std这样的field,尽可能让某一个field精准匹配query string,贡献更高的分数,将更精准匹配的数据排到前面

    • 优点:将尽可能匹配更多field的结果推送到最前面,整个排序结果是比较均匀的
    • 缺点:可能那些精准匹配的结果,无法推送到最前面

    实际的例子:wiki,明显的most_fields策略,搜索结果比较均匀,但是的确要翻好几页才能找到最匹配的结果