1、document数据格式

面向文档的搜索分析引擎
(1)应用系统的数据结构都是面向对象的,复杂的
(2)对象数据存储到数据库中,只能拆解开来,变为扁平的多张表,每次查询的时候还得还原回对象格式,相当麻烦
(3)ES是面向文档的,文档中存储的数据结构,与面向对象的数据结构是一样的,基于这种文档数据结构,es可以提供复杂的索引,全文检索,分析聚合等功能
(4)es的document用json数据格式来表达

  1. public class Employee {
  2. private String email;
  3. private String firstName;
  4. private String lastName;
  5. private EmployeeInfo info;
  6. private Date joinDate;
  7. }
  8. private class EmployeeInfo {
  9. private String bio; // 性格
  10. private Integer age;
  11. private String[] interests; // 兴趣爱好
  12. }
  13. EmployeeInfo info = new EmployeeInfo();
  14. info.setBio("curious and modest");
  15. info.setAge(30);
  16. info.setInterests(new String[]{"bike", "climb"});
  17. Employee employee = new Employee();
  18. employee.setEmail("zhangsan@sina.com");
  19. employee.setFirstName("san");
  20. employee.setLastName("zhang");
  21. employee.setInfo(info);
  22. employee.setJoinDate(new Date());

employee对象:里面包含了Employee类自己的属性,还有一个EmployeeInfo对象
两张表:employee表,employee_info表,将employee对象的数据重新拆开来,变成Employee数据和EmployeeInfo数据
employee表:email,first_name,last_name,join_date,4个字段
employee_info表:bio,age,interests,3个字段;此外还有一个外键字段,比如employee_id,关联着employee表

{
    "email":      "zhangsan@sina.com",
    "first_name": "san",
    "last_name": "zhang",
    "info": {
        "bio":         "curious and modest",
        "age":         30,
        "interests": [ "bike", "climb" ]
    },
    "join_date": "2017/01/01"
}

我们就明白了es的document数据格式和数据库的关系型数据格式的区别


2、电商网站商品管理案例背景介绍

有一个电商网站,需要为其基于ES构建一个后台系统,提供以下功能:
(1)对商品信息进行CRUD(增删改查)操作
(2)执行简单的结构化查询
(3)可以执行简单的全文检索,以及复杂的phrase(短语)检索
(4)对于全文检索的结果,可以进行高亮显示
(5)对数据进行简单的聚合分析


3、简单的集群管理

(1)快速检查集群的健康状况
ES提供了一套api,叫做cat api,可以查看ES中各种各样的数据
查看 ES 的健康状况,命令如下:

GET /_cat/health?v

结果:

epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488006741 15:12:21  elasticsearch yellow          1         1      1   1    0    0        1             0                  -                 50.0%

epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488007113 15:18:33  elasticsearch green           2         2      2   1    0    0        0             0                  -                100.0%

epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1488007216 15:20:16  elasticsearch yellow          1         1      1   1    0    0        1             0                  -                 50.0%

image
如何快速了解集群的健康状况?green、yellow、red?

  • green:每个索引的primary shard和replica shard都是active状态的
  • yellow:每个索引的primary shard都是active状态的,但是部分replica shard不是active状态,处于不可用的状态
  • red:不是所有索引的primary shard都是active状态的,部分索引有数据丢失了

为什么现在会处于一个yellow状态?
我们现在就一个笔记本电脑,就启动了一个es进程,相当于就只有一个node。现在es中有一个index,就是kibana自己内置建立的index。由于默认的配置是给每个index分配5个primary shard和5个replica shard,而且primary shard和replica shard不能在同一台机器上(为了容错)。现在kibana自己建立的index是1个primary shard和1个replica shard。当前就一个node,所以只有1个primary shard被分配了和启动了,但是一个replica shard没有第二台机器去启动。
做一个小实验:此时只要启动第二个es进程,就会在es集群中有2个node,然后那1个replica shard就会自动分配过去,然后cluster status就会变成green状态。
(2)快速查看集群中有哪些索引

GET /_cat/indices?v
health status index   uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   .kibana rUm9n9wMRQCCrRDEhqneBg   1   1          1            0      3.1kb          3.1kb

image
(3)简单的索引操作
创建索引:

PUT /test_index?pretty

image
image
删除索引:

DELETE /test_index?pretty

image


4、商品的CRUD操作

(1)新增商品:新增文档,建立索引

PUT /index/_deoc/id
{
  "json数据"
}

ES7.X 创建文档和索引的方式:

PUT /ecommerce/_doc/1
{
    "name" : "gaolujie yagao",
    "desc" :  "gaoxiao meibai",
    "price" :  30,
    "producer" :      "gaolujie producer",
    "tags": [ "meibai", "fangzhu" ]
}

PUT /ecommerce/_doc/2
{
    "name" : "jiajieshi yagao",
    "desc" :  "youxiao fangzhu",
    "price" :  25,
    "producer" :      "jiajieshi producer",
    "tags": [ "fangzhu" ]
}

PUT /ecommerce/_doc/3
{
    "name" : "zhonghua yagao",
    "desc" :  "caoben zhiwu",
    "price" :  40,
    "producer" :      "zhonghua producer",
    "tags": [ "qingxin" ]
}

PUT /ecommerce/_doc/4
{
    "name" : "shudashi yagao",
    "desc" :  "caoben zhiwu",
    "price" :  50,
    "producer" :      "shudashi yagao producer",
    "tags": [ "meibai", "qingxin" ]
}

es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索
注 Elasticsearch 7.x :不推荐在请求中指定类型。例如,索引文档不再需要文档type。新索引API 用于PUT {index}/_doc/{id}显式ID和POST {index}/_doc自动生成的ID。请注意,在7.0中,它_doc是路径的永久部分,并表示端点名称而不是文档类型。7.X 不需要在指定 type
(2)查询商品:检索文档

GET /index/_doc/id

案例:

GET /ecommerce/_doc/1

结果:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 2,
  "_seq_no" : 8,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "gaolujie yagao",
    "desc" : "gaoxiao meibai",
    "price" : 30,
    "producer" : "gaolujie producer",
    "tags" : [
      "meibai",
      "fangzhu"
    ]
  }
}

(3)修改商品:替换文档

PUT /ecommerce/_doc/1
{
    "name" : "jiaqiangban gaolujie yagao",
    "desc" :  "gaoxiao meibai",
    "price" :  30,
    "producer" : "gaolujie producer",
    "tags": [ "meibai", "fangzhu" ]
}

创建时的结果:

{
  "_index": "ecommerce",
  "_type": "product",
  "_id": "1",
  "_version": 1,
  "result": "created",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "created": true
}

替换时的结果:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 2,
  "result" : "updated",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 4,
  "_primary_term" : 1
}

如下的替换在 ES 5.X 中会报错,但是在 7.X 中是可以执行的:

PUT /ecommerce/_doc/1
{
    "name" : "jiaqiangban gaolujie yagao"
}

结果:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 4,
  "result" : "updated",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 10,
  "_primary_term" : 1
}

获取修改后的文档:

GET /ecommerce/_doc/1

结果:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 5,
  "_seq_no" : 11,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "jiaqiangban gaolujie yagao"
  }
}

只剩下一个 name 其他的数据都没了。
替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改
(4)修改商品:更新文档

POST /ecommerce/_update/3
{
  "script": {
    "source": "ctx._source.name=\"plus zhonghua yagao\""
  }
}

结果:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "3",
  "_version" : 2,
  "result" : "updated",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 6,
  "_primary_term" : 1
}
{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "3",
  "_version" : 3,
  "_seq_no" : 8,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "plus zhonghua yagao",
    "desc" : "caoben zhiwu",
    "price" : 40,
    "producer" : "zhonghua producer",
    "tags" : [
      "qingxin"
    ]
  }
}

(5)删除商品:删除文档

DELETE /ecommerce/_doc/1

结果:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 11,
  "result" : "deleted",
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  },
  "_seq_no" : 17,
  "_primary_term" : 1
}

再次文档查找不到:

{
  "_index" : "ecommerce",
  "_type" : "_doc",
  "_id" : "1",
  "found" : false
}

参考文档:https://blog.csdn.net/any11/article/category/8905883
https://blog.csdn.net/chengyuqiang/article/details/86015411
https://blog.csdn.net/chengyuqiang/article/details/86000472
官网:https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html