我们可以做到自定义一个function_score函数,自己将某个field的值,跟es内置算出来的分数进行运算,然后由自己指定的field来进行分数的增强
    给所有的帖子数据增加follower数量

    1. POST /forum/_bulk
    2. { "update": { "_id": "1"} }
    3. { "doc" : {"follower_num" : 5} }
    4. { "update": { "_id": "2"} }
    5. { "doc" : {"follower_num" : 10} }
    6. { "update": { "_id": "3"} }
    7. { "doc" : {"follower_num" : 25} }
    8. { "update": { "_id": "4"} }
    9. { "doc" : {"follower_num" : 3} }
    10. { "update": { "_id": "5"} }
    11. { "doc" : {"follower_num" : 60} }
    12. { "update": { "_id": "6"} }
    13. { "doc" : {"follower_num" : 50} }
    14. { "update": { "_id": "7"} }
    15. { "doc" : {"follower_num" : 20} }
    16. { "update": { "_id": "8"} }
    17. { "doc" : {"follower_num" : 32} }
    18. { "update": { "_id": "9"} }
    19. { "doc" : {"follower_num" : 30} }
    20. { "update": { "_id": "10"} }
    21. { "doc" : {"follower_num" : 70} }
    22. { "update": { "_id": "11"} }
    23. { "doc" : {"follower_num" : 80} }

    将对帖子搜索得到的分数,跟follower_num进行运算,由follower_num在一定程度上增强帖子的分数
    看帖子的人越多,那么帖子的分数就越高

    GET /forum/_search
    {
      "query": {
        "function_score": {
          "query": {
            "multi_match": {
              "query": "java spark",
              "fields": ["tile", "content"]
            }
          },
          "field_value_factor": {
            "field": "follower_num",
            "modifier": "log1p",
            "factor": 0.5
          },
          "boost_mode": "sum",
          "max_boost": 2
        }
      }
    }
    

    如果只有field,那么会将每个doc的分数都乘以follower_num,如果有的doc follower0,那么分数就会变为0,效果很不好。因此一般会加个log1p函数,公式会变为,new_score = old_score * log(1 + number_of_votes),这样出来的分数会比较合理
    再加个factor,可以进一步影响分数,new_score = old_score * log(1 + factor * number_of_votes)
    boost_mode,可以决定分数与指定字段的值如何计算,multiplysumminmaxreplace
    max_boost,限制计算出来的分数不要超过max_boost指定的值