import numpy as np
# MSE Loss
def mse(y, t):
return 0.5*np.sum((y-t)**2)
t=[0,1,1,0,0]
y=[0,0.4,0.73,0.04,0.25]
print(mse(y,t))
# Cross Entropy Loss
def CELoss(y, t):
# 防止传入 log 的输入为0
delta = 1e - 7
return -np.sum(t*np.log(y+delta))
# mini batch版本
def CELoss(y, t):
if y.dim == 1:
# 转为二维
t = t.reshape(1, t.size)
y = y.reshape(1, y.size)
batch_size = y.shape[0]
return -np.sum(t*np.log(y+1e-7))/batch_size