- Histograms, Clearly Explained
- How to tell a story with US Census Data
- What is a statistical distribution?
- The Normal Distribution
- Statistics Fundamentals: Population Parameters
- Statistics Fundamentals: Estimating the Mean, Variance and Standard Deviation
- Covariance and Correlation Part 1: Covariance
- Covariance and Correlation Part 2: Pearson’s Correlation
- What is a statistical model?
- What does it mean to “sample from a distribution”?
- Expected Values Part 1, Main Ideas!!! (Expected Values for Discrete Variables)
- Hypothesis Testing and the Null Hypothesis
- Alternative Hypothesis: Main Ideas
- p-values: What they are and how to interpret them
- How to Calculate p-values
- p-hacking: What it is and how to avoid it
- False Discovery Rate (FDR), Clearly Explained
- Statistical Power, Clearly Explained
- Power Analysis, Clearly Explained
- Conditional Probability, Clearly Explained
- The Binomial Distribution and Test
- The Central Limit Theorem (or “How I Learned to Stop Worrying and Love the t-test”).
- The Difference between Technical and Biological Replicates
- The sample size and the effective sample size
- Standard Deviation vs Standard Error
- The Standard Error
- Bootstrapping Part 1: Main Ideas
- Bootstrapping Part 2: Calculating p-values
- Bar Charts Are Better Than Pie Charts
- Boxplots, Clearly Explained
- Logs (logarithms), clearly explained
- How to make your own StatQuest!!!
- Confidence Intervals
- R-squared explained
- Linear Models Part 0: Fitting a line to data, aka Least Squares, aka Linear Regression
- Fitting a curve to data, aka Lowess, aka Loess
- Linear Models Part 1: Linear Regression
- Linear Models: Linear Regression in R
- Linear Models Part 1.5: Multiple Regression
- Linear Models: Multiple Regression in R
- Linear Models Part 2: t-tests and ANOVA
- Linear Models Part 3: Design Matrices
- Linear Models: Design Matrix Examples in R
- Quantiles and Percentiles
- Quantile-Quantile Plots (QQ Plots)
- Quantile Normalization
- Probability vs Likelihood
- Maximum Likelihood
- Maximum Likelihood: A worked out example for the exponential distribution
- Maximum Likelihood: A worked out example for the binomial distribution
- Maximum Likelihood: A worked out example for the normal distribution
- Odds and Log(Odds)
- Odds Ratios and Log(Odds Ratios)
Statistical Tests:
- Enrichment Analysis using Fisher’s Exact Test and the Hypergeometric Distribution
- Which t-test to use
- p-values: What they are and how to interpret them
- How to Calculate p-values
- Thresholds for Significance
- FDR and the Benjamini-Hochberg Method clearly explained
- p-hacking and power calculations
High-throughput Sequencing Analysis:
- A Gentle Introduction to RNA-seq
- A Gentle Introduction to ChIP-seq
- edgeR, part1: Library Normalization
- DESeq2, part1: Library Normalization
- edgeR and DESeq2, part2: Independent Filtering (removing genes with low read counts)
- RNA-seq – The Problem with Technical Replicates
- RPKM, FPKM, and TPM
Statistics and Machine Learning in R
https://youtube.com/playlist?list=PLblh5JKOoLUJJpBNfk8_YadPwDTO2SCbx
Logistic Regression
Random Forests
Linear Regression and Linear Models