P(h | D) = P(h) * P(D | h) / P(D)
分词问题的描述为:给定一个句子(字串),如:
南京市长江大桥
如何对这个句子进行分词(词串)才是最靠谱的。例如:
- 南京市/长江大桥
- 南京/市长/江大桥
这两个分词,到底哪个更靠谱呢?
我们用贝叶斯公式来形式化地描述这个问题,令 X 为字串(句子),Y 为词串(一种特定的分词假设)。我们就是需要寻找使得 P(Y|X) 最大的 Y ,使用一次贝叶斯可得:
P(Y|X) ∝ P(Y)*P(X|Y)
用自然语言来说就是 这种分词方式(词串)的可能性 乘以 这个词串生成我们的句子的可能性。我们进一步容易看到:可以近似地将 P(X|Y) 看作是恒等于 1 的,因为任意假想的一种分词方式之下生成我们的句子总是精准地生成的(只需把分词之间的分界符号扔掉即可)。于是,我们就变成了去最大化 P(Y) ,也就是寻找一种分词使得这个词串(句子)的概率最大化。而如何计算一个词串:
5.1 贝叶斯垃圾邮件过滤器
问题是什么?问题是,给定一封邮件,判定它是否属于垃圾邮件。按照先例,我们还是用 D 来表示这封邮件,注意 D 由 N 个单词组成。我们用 h+ 来表示垃圾邮件,h- 表示正常邮件。问题可以形式化地描述为求:
P(h+|D) = P(h+) P(D|h+) / P(D)
P(h-|D) = P(h-) P(D|h-) / P(D)
其中 P(h+) 和 P(h-) 这两个先验概率都是很容易求出来的,只需要计算一个邮件库里面垃圾邮件和正常邮件的比例就行了。然而 P(D|h+) 却不容易求,因为 D 里面含有 N 个单词 d1, d2, d3, .. ,所以P(D|h+) = P(d1,d2,..,dn|h+) 。我们又一次遇到了数据稀疏性,为什么这么说呢?P(d1,d2,..,dn|h+) 就是说在垃圾邮件当中出现跟我们目前这封邮件一模一样的一封邮件的概率是多大!开玩笑,每封邮件都是不同的,世界上有无穷多封邮件。瞧,这就是数据稀疏性,因为可以肯定地说,你收集的训练数据库不管里面含了多少封邮件,也不可能找出一封跟目前这封一模一样的。结果呢?我们又该如何来计算 P(d1,d2,..,dn|h+) 呢?
我们将 P(d1,d2,..,dn|h+) 扩展为: P(d1|h+) P(d2|d1, h+) P(d3|d2,d1, h+) .. 。熟悉这个式子吗?这里我们会使用一个更激进的假设,我们假设 di 与 di-1 是完全条件无关的,于是式子就简化为 P(d1|h+) P(d2|h+) P(d3|h+) .. 。这个就是所谓的条件独立假设,也正是朴素贝叶斯方法的朴素之处。而计算 P(d1|h+) P(d2|h+) P(d3|h+) * .. 就太简单了,只要统计 di 这个单词在垃圾邮件中出现的频率即可。
罗志祥是不是渣男的概率 P(h)
爆料的概率 P(D)
P(h) 先验概率,单纯凭借你对罗志祥的了解来判断他是不是渣男的概率 大概是 五五开
P(D | h)最大似然率 罗志祥是渣男的情况下周扬青爆料的概率,根据逻辑判断这个概率是很高的
P(D) 爆料的概率 大概也是五五开
以上 结果导致 P(h | D) 也就是爆料了的情况下罗志祥是渣男的概率很高, 如果你对罗志祥很了解,那么你的先验概率影响很大,如果你对他不了解,逻辑判断的最大似然率影响很大