获取更多R语言知识,请关注公众号:医学和生信笔记
医学和生信笔记 公众号主要分享:1.医学小知识、肛肠科小知识;2.R语言和Python相关的数据分析、可视化、机器学习等;3.生物信息学学习资料和自己的学习笔记!
关于模型解释平常接触的不是特别多,简单学习下。
理论上,所有通用的模型解释框架都可应用于mlr3,只需要把训练好的模型从Learner对象中提取出来即可。
目前最受欢迎的两个框架分别是:
imlDALEX
IML
关于iml包进行模型解释有专门一本书:IML Book。
这里简单介绍。
企鹅任务
企鹅数据包括8个变量,344个企鹅(344行)。
data("penguins", package = "palmerpenguins")str(penguins)
## tibble [344 x 8] (S3: tbl_df/tbl/data.frame)## $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...## $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...## $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...## $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...## $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...## $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...## $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...## $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
创建任务:
library(iml)library(mlr3)library(mlr3learners)set.seed(1)penguins <- na.omit(penguins)task_peng <- as_task_classif(penguins, target = "species")
选择模型并训练,提取模型:
learner <- lrn("classif.ranger", predict_type = "prob")learner$train(task_peng)learner$model
## Ranger result#### Call:## ranger::ranger(dependent.variable.name = task$target_names, data = task$data(), probability = self$predict_type == "prob", case.weights = task$weights$weight, num.threads = 1L)#### Type: Probability estimation## Number of trees: 500## Sample size: 333## Number of independent variables: 7## Mtry: 2## Target node size: 10## Variable importance mode: none## Splitrule: gini## OOB prediction error (Brier s.): 0.01790106
x <- penguins[which(names(penguins) != "species")]model <- Predictor$new(learner, data = x, y = penguins$species)
FeatureEffects
num_features <- c("bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g", "year")effect <- FeatureEffects$new(model)plot(effect, features = num_features)

Shapley
x <- penguins[which(names(penguins) != "species")]model <- Predictor$new(learner, data = penguins, y = "species")x.interest <- data.frame(penguins[1, ])shapley <- Shapley$new(model, x.interest = x.interest)plot(shapley)

Featurelmp
effect <- FeatureImp$new(model, loss = "ce")effect$plot(features = num_features)

独立测试数据
split <- partition(task_peng, ratio = 0.8)train_set <- split$traintest_set <- split$testlearner$train(task_peng, row_ids = train_set)prediction <- learner$predict(task_peng, row_ids = test_set)
# 训练集model <- Predictor$new(learner, data = penguins[train_set, ], y = "species")effect <- FeatureImp$new(model, loss = "ce")plot_train <- plot(effect, features = num_features)# 测试集model <- Predictor$new(learner, data = penguins[test_set, ], y = "species")effect <- FeatureImp$new(model, loss = "ce")plot_test <- plot(effect, features = num_features)# 放到一起library("patchwork")plot_train + plot_test

分别查看feasurelmp:
model <- Predictor$new(learner, data = penguins[train_set, ], y = "species")effect <- FeatureEffects$new(model)plot(effect, features = num_features)

model <- Predictor$new(learner, data = penguins[test_set, ], y = "species")effect <- FeatureEffects$new(model)plot(effect, features = num_features)

DALEX
这个包介绍的方法也有一本书:Explanatory Model Analysis。
DALEX包可透视预测模型,帮助我们探索、解释、可视化模型行为。将使用fifa20数据集进行演示。
这个包干的事情可通过下图理解:
读取数据
library(DALEX)
## Welcome to DALEX (version: 2.3.0).## Find examples and detailed introduction at: http://ema.drwhy.ai/
#### 载入程辑包:'DALEX'
## The following object is masked from 'package:generics':#### explain
## The following object is masked from 'package:dplyr':#### explain
data(fifa, package = "DALEX")fifa[1:2, c("value_eur", "age", "height_cm", "nationality", "attacking_crossing")]
## value_eur age height_cm nationality attacking_crossing## L. Messi 95500000 32 170 Argentina 88## Cristiano Ronaldo 58500000 34 187 Portugal 84
对于每个球员,都有42个feature,
dim(fifa)
## [1] 5000 42
进行简单的处理,有助于我们理解:
fifa[, c("nationality", "overall", "potential", "wage_eur")] = NULLfor (i in 1:ncol(fifa)) fifa[, i] = as.numeric(fifa[, i])
建模
library(mlr3)library(mlr3learners)fifa_task <- as_task_regr(fifa, target = "value_eur")fifa_ranger <- lrn("regr.ranger", num.trees = 250)fifa_ranger$train(fifa_task)fifa_ranger
## <LearnerRegrRanger:regr.ranger>## * Model: ranger## * Parameters: num.threads=1, num.trees=250## * Packages: mlr3, mlr3learners, ranger## * Predict Type: response## * Feature types: logical, integer, numeric, character, factor, ordered## * Properties: hotstart_backward, importance, oob_error, weights
DALEX工作的一般流程
model %>%explain_mlr3(data = ..., y = ..., label = ...) %>%model_parts() %>%plot()
library("DALEX")library("DALEXtra")
## Anaconda not found on your computer. Conda related functionality such as create_env.R and condaenv and yml parameters from explain_scikitlearn will not be available
ranger_exp <- explain_mlr3(fifa_ranger,data = fifa,y = fifa$value_eur,label = "Ranger RF",colorize = FALSE)
## Preparation of a new explainer is initiated## -> model label : Ranger RF## -> data : 5000 rows 38 cols## -> target variable : 5000 values## -> predict function : yhat.LearnerRegr will be used ( default )## -> predicted values : No value for predict function target column. ( default )## -> model_info : package mlr3 , ver. 0.13.2.9000 , task regression ( default )## -> predicted values : numerical, min = 509536.7 , mean = 7472248 , max = 92074300## -> residual function : difference between y and yhat ( default )## -> residuals : numerical, min = -8364287 , mean = 1039.203 , max = 17510200## A new explainer has been created!
数据集水平的探索
fifa_vi <- model_parts(ranger_exp)head(fifa_vi)
## variable mean_dropout_loss label## 1 _full_model_ 1339676 Ranger RF## 2 value_eur 1339676 Ranger RF## 3 weight_kg 1400918 Ranger RF## 4 movement_balance 1402226 Ranger RF## 5 goalkeeping_kicking 1405259 Ranger RF## 6 height_cm 1409160 Ranger RF
plot(fifa_vi, max_vars = 12, show_boxplots = F)

selected_variables <- c("age", "movement_reactions","skill_ball_control", "skill_dribbling")fifa_pd <- model_profile(ranger_exp,variables = selected_variables)$agr_profilesfifa_pd
## Top profiles :## _vname_ _label_ _x_ _yhat_ _ids_## 1 skill_ball_control Ranger RF 5 7535469 0## 2 skill_dribbling Ranger RF 7 7911763 0## 3 skill_dribbling Ranger RF 11 7904604 0## 4 skill_dribbling Ranger RF 12 7903967 0## 5 skill_dribbling Ranger RF 13 7902823 0## 6 skill_dribbling Ranger RF 14 7901248 0
library("ggplot2")plot(fifa_pd) +scale_y_continuous("Estimated value in Euro", labels = scales::dollar_format(suffix = "€", prefix = "")) +ggtitle("Partial Dependence profiles for selected variables")

instance水平的探索
ronaldo <- fifa["Cristiano Ronaldo", ]ronaldo_bd_ranger <- predict_parts(ranger_exp,new_observation = ronaldo)head(ronaldo_bd_ranger)
## contribution## Ranger RF: intercept 7472248## Ranger RF: movement_reactions = 96 11845999## Ranger RF: skill_ball_control = 92 7170577## Ranger RF: mentality_positioning = 95 4565939## Ranger RF: attacking_finishing = 94 4874197## Ranger RF: attacking_short_passing = 83 4279799
plot(ronaldo_bd_ranger)

ronaldo_shap_ranger <- predict_parts(ranger_exp,new_observation = ronaldo,type = "shap")plot(ronaldo_shap_ranger) +scale_y_continuous("Estimated value in Euro", labels = scales::dollar_format(suffix = "€", prefix = ""))

selected_variables <- c("age", "movement_reactions","skill_ball_control", "skill_dribbling")ronaldo_cp_ranger <- predict_profile(ranger_exp, ronaldo, variables = selected_variables)plot(ronaldo_cp_ranger, variables = selected_variables) +scale_y_continuous("Estimated value of Christiano Ronaldo", labels = scales::dollar_format(suffix = "€", prefix = ""))

获取更多R语言知识,请关注公众号:医学和生信笔记
医学和生信笔记 公众号主要分享:1.医学小知识、肛肠科小知识;2.R语言和Python相关的数据分析、可视化、机器学习等;3.生物信息学学习资料和自己的学习笔记!
