使用torchtext的文本分类
原文:https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html
本教程说明如何使用torchtext中的文本分类数据集,包括
- AG_NEWS,- SogouNews,- DBpedia,- YelpReviewPolarity,- YelpReviewFull,- YahooAnswers,- AmazonReviewPolarity,- AmazonReviewFull
此示例显示了如何使用这些TextClassification数据集之一训练用于分类的监督学习算法。
使用 N 元组加载数据
一袋 N 元组特征用于捕获有关本地单词顺序的一些部分信息。 在实践中,应用二元语法或三元语法作为单词组比仅一个单词提供更多的好处。 一个例子:
"load data with ngrams"Bi-grams results: "load data", "data with", "with ngrams"Tri-grams results: "load data with", "data with ngrams"
TextClassification数据集支持ngrams方法。 通过将ngrams设置为 2,数据集中的示例文本将是一个单字加二元组字符串的列表。
import torchimport torchtextfrom torchtext.datasets import text_classificationNGRAMS = 2import osif not os.path.isdir('./.data'):os.mkdir('./.data')train_dataset, test_dataset = text_classification.DATASETS['AG_NEWS'](root='./.data', ngrams=NGRAMS, vocab=None)BATCH_SIZE = 16device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
定义模型
该模型由EmbeddingBag层和线性层组成(请参见下图)。 nn.EmbeddingBag计算嵌入“袋”的平均值。 此处的文本条目具有不同的长度。 nn.EmbeddingBag此处不需要填充,因为文本长度以偏移量保存。
另外,由于nn.EmbeddingBag会动态累积嵌入中的平均值,因此nn.EmbeddingBag可以提高性能和存储效率,以处理张量序列。

import torch.nn as nnimport torch.nn.functional as Fclass TextSentiment(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super().__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)
启动实例
AG_NEWS数据集具有四个标签,因此类别数是四个。
1 : World2 : Sports3 : Business4 : Sci/Tec
词汇的大小等于词汇的长度(包括单个单词和 N 元组)。 类的数量等于标签的数量,在AG_NEWS情况下为 4。
VOCAB_SIZE = len(train_dataset.get_vocab())EMBED_DIM = 32NUN_CLASS = len(train_dataset.get_labels())model = TextSentiment(VOCAB_SIZE, EMBED_DIM, NUN_CLASS).to(device)
用于生成批量的函数
由于文本条目的长度不同,因此使用自定义函数generate_batch()生成数据批和偏移量。 该函数被传递到torch.utils.data.DataLoader中的collate_fn。 collate_fn的输入是张量列表,其大小为batch_size,collate_fn函数将它们打包成一个小批量。 请注意此处,并确保将collate_fn声明为顶级def。 这样可以确保该函数在每个工作程序中均可用。
原始数据批量输入中的文本条目打包到一个列表中,并作为单个张量级联,作为nn.EmbeddingBag的输入。 偏移量是定界符的张量,表示文本张量中各个序列的起始索引。 Label是一个张量,用于保存单个文本条目的标签。
def generate_batch(batch):label = torch.tensor([entry[0] for entry in batch])text = [entry[1] for entry in batch]offsets = [0] + [len(entry) for entry in text]# torch.Tensor.cumsum returns the cumulative sum# of elements in the dimension dim.# torch.Tensor([1.0, 2.0, 3.0]).cumsum(dim=0)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)text = torch.cat(text)return text, offsets, label
定义函数来训练模型并评估结果
建议 PyTorch 用户使用torch.utils.data.DataLoader,它可以轻松地并行加载数据(教程在这里)。 我们在此处使用DataLoader加载AG_NEWS数据集,并将其发送到模型以进行训练/验证。
from torch.utils.data import DataLoaderdef train_func(sub_train_):# Train the modeltrain_loss = 0train_acc = 0data = DataLoader(sub_train_, batch_size=BATCH_SIZE, shuffle=True,collate_fn=generate_batch)for i, (text, offsets, cls) in enumerate(data):optimizer.zero_grad()text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)output = model(text, offsets)loss = criterion(output, cls)train_loss += loss.item()loss.backward()optimizer.step()train_acc += (output.argmax(1) == cls).sum().item()# Adjust the learning ratescheduler.step()return train_loss / len(sub_train_), train_acc / len(sub_train_)def test(data_):loss = 0acc = 0data = DataLoader(data_, batch_size=BATCH_SIZE, collate_fn=generate_batch)for text, offsets, cls in data:text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)with torch.no_grad():output = model(text, offsets)loss = criterion(output, cls)loss += loss.item()acc += (output.argmax(1) == cls).sum().item()return loss / len(data_), acc / len(data_)
分割数据集并运行模型
由于原始的AG_NEWS没有有效的数据集,因此我们将训练数据集分为训练/有效集,其分割比率为 0.95(训练)和 0.05(有效)。 在这里,我们在 PyTorch 核心库中使用torch.utils.data.dataset.random_split函数。
CrossEntropyLoss标准将nn.LogSoftmax()和nn.NLLLoss()合并到一个类中。 在训练带有C类的分类问题时很有用。 SGD实现了随机梯度下降方法作为优化程序。 初始学习率设置为 4.0。 StepLR在此处用于通过历时调整学习率。
import timefrom torch.utils.data.dataset import random_splitN_EPOCHS = 5min_valid_loss = float('inf')criterion = torch.nn.CrossEntropyLoss().to(device)optimizer = torch.optim.SGD(model.parameters(), lr=4.0)scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9)train_len = int(len(train_dataset) * 0.95)sub_train_, sub_valid_ = \random_split(train_dataset, [train_len, len(train_dataset) - train_len])for epoch in range(N_EPOCHS):start_time = time.time()train_loss, train_acc = train_func(sub_train_)valid_loss, valid_acc = test(sub_valid_)secs = int(time.time() - start_time)mins = secs / 60secs = secs % 60print('Epoch: %d' %(epoch + 1), " | time in %d minutes, %d seconds" %(mins, secs))print(f'\tLoss: {train_loss:.4f}(train)\t|\tAcc: {train_acc * 100:.1f}%(train)')print(f'\tLoss: {valid_loss:.4f}(valid)\t|\tAcc: {valid_acc * 100:.1f}%(valid)')
出:
Epoch: 1 | time in 0 minutes, 11 secondsLoss: 0.0262(train) | Acc: 84.7%(train)Loss: 0.0002(valid) | Acc: 89.3%(valid)Epoch: 2 | time in 0 minutes, 11 secondsLoss: 0.0119(train) | Acc: 93.6%(train)Loss: 0.0002(valid) | Acc: 89.6%(valid)Epoch: 3 | time in 0 minutes, 11 secondsLoss: 0.0069(train) | Acc: 96.3%(train)Loss: 0.0000(valid) | Acc: 91.8%(valid)Epoch: 4 | time in 0 minutes, 11 secondsLoss: 0.0038(train) | Acc: 98.1%(train)Loss: 0.0000(valid) | Acc: 91.5%(valid)Epoch: 5 | time in 0 minutes, 11 secondsLoss: 0.0022(train) | Acc: 99.0%(train)Loss: 0.0000(valid) | Acc: 91.4%(valid)
使用以下信息在 GPU 上运行模型:
周期:1 | 时间在 0 分 11 秒内
Loss: 0.0263(train) | Acc: 84.5%(train)Loss: 0.0001(valid) | Acc: 89.0%(valid)
周期:2 | 时间在 0 分钟 10 秒内
Loss: 0.0119(train) | Acc: 93.6%(train)Loss: 0.0000(valid) | Acc: 89.6%(valid)
周期:3 | 时间在 0 分钟 9 秒内
Loss: 0.0069(train) | Acc: 96.4%(train)Loss: 0.0000(valid) | Acc: 90.5%(valid)
周期:4 | 时间在 0 分 11 秒内
Loss: 0.0038(train) | Acc: 98.2%(train)Loss: 0.0000(valid) | Acc: 90.4%(valid)
周期:5 | 时间在 0 分 11 秒内
Loss: 0.0022(train) | Acc: 99.0%(train)Loss: 0.0000(valid) | Acc: 91.0%(valid)
使用测试数据集评估模型
print('Checking the results of test dataset...')test_loss, test_acc = test(test_dataset)print(f'\tLoss: {test_loss:.4f}(test)\t|\tAcc: {test_acc * 100:.1f}%(test)')
出:
Checking the results of test dataset...Loss: 0.0002(test) | Acc: 90.9%(test)
正在检查测试数据集的结果…
Loss: 0.0237(test) | Acc: 90.5%(test)
测试随机新闻
使用到目前为止最好的模型并测试高尔夫新闻。 标签信息在这里。
import refrom torchtext.data.utils import ngrams_iteratorfrom torchtext.data.utils import get_tokenizerag_news_label = {1 : "World",2 : "Sports",3 : "Business",4 : "Sci/Tec"}def predict(text, model, vocab, ngrams):tokenizer = get_tokenizer("basic_english")with torch.no_grad():text = torch.tensor([vocab[token]for token in ngrams_iterator(tokenizer(text), ngrams)])output = model(text, torch.tensor([0]))return output.argmax(1).item() + 1ex_text_str = "MEMPHIS, Tenn. – Four days ago, Jon Rahm was \enduring the season's worst weather conditions on Sunday at The \Open on his way to a closing 75 at Royal Portrush, which \considering the wind and the rain was a respectable showing. \Thursday's first round at the WGC-FedEx St. Jude Invitational \was another story. With temperatures in the mid-80s and hardly any \wind, the Spaniard was 13 strokes better in a flawless round. \Thanks to his best putting performance on the PGA Tour, Rahm \finished with an 8-under 62 for a three-stroke lead, which \was even more impressive considering he'd never played the \front nine at TPC Southwind."vocab = train_dataset.get_vocab()model = model.to("cpu")print("This is a %s news" %ag_news_label[predict(ex_text_str, model, vocab, 2)])
出:
This is a Sports news
这是体育新闻
脚本的总运行时间:(1 分 38.483 秒)
下载 Python 源码:text_sentiment_ngrams_tutorial.py
下载 Jupyter 笔记本:text_sentiment_ngrams_tutorial.ipynb
由 Sphinx 画廊生成的画廊
