使用 TorchText 进行语言翻译

原文: https://pytorch.org/tutorials/beginner/torchtext_translation_tutorial.html

注意

单击此处的下载完整的示例代码

本教程说明如何使用torchtext的几个便捷类来预处理包含英语和德语句子的著名数据集的数据,并使用它来训练序列到序列模型,并注意将德语句子翻译成英语 。

它基于 PyTorch 社区成员 Ben Trevett 的本教程,并由 Seth Weidman 在 Ben 的允许下创建。

在本教程结束时,您将能够:

<cite>字段</cite>和 <cite>TranslationDataset</cite>

torchtext具有用于创建数据集的实用程序,可以轻松地对其进行迭代,以创建语言翻译模型。 一个关键类是字段,它指定应该对每个句子进行预处理的方式,另一个关键类是 <cite>TranslationDataset</cite> ; torchtext有几个这样的数据集; 在本教程中,我们将使用 Multi30k 数据集,其中包含约 30,000 个英语和德语句子(平均长度约为 13 个单词)。

注意:本教程中的标记化需要 Spacy 我们使用 Spacy,因为它为英语以外的其他语言的标记化提供了强大的支持。 torchtext提供了basic_english标记器,并支持其他英语标记器(例如摩西),但对于语言翻译(需要多种语言),Spacy 是您的最佳选择。

要运行本教程,请先使用pipconda安装spacy。 接下来,下载英语和德语 Spacy 分词器的原始数据:

  1. python -m spacy download en
  2. python -m spacy download de

安装 Spacy 后,以下代码将根据Field中定义的标记器,标记TranslationDataset中的每个句子。

  1. from torchtext.datasets import Multi30k
  2. from torchtext.data import Field, BucketIterator
  3. SRC = Field(tokenize = "spacy",
  4. tokenizer_language="de",
  5. init_token = '<sos>',
  6. eos_token = '<eos>',
  7. lower = True)
  8. TRG = Field(tokenize = "spacy",
  9. tokenizer_language="en",
  10. init_token = '<sos>',
  11. eos_token = '<eos>',
  12. lower = True)
  13. train_data, valid_data, test_data = Multi30k.splits(exts = ('.de', '.en'),
  14. fields = (SRC, TRG))

出:

  1. downloading training.tar.gz
  2. downloading validation.tar.gz
  3. downloading mmt_task1_test2016.tar.gz

现在我们已经定义了train_data,我们可以看到torchtextField的一个非常有用的功能:build_vocab方法现在允许我们创建与每种语言相关的词汇

  1. SRC.build_vocab(train_data, min_freq = 2)
  2. TRG.build_vocab(train_data, min_freq = 2)

一旦运行了这些代码行,SRC.vocab.stoi将是一个词典,其词汇表中的标记作为键,而其对应的索引作为值; SRC.vocab.itos将是相同的字典,其中的键和值被交换。 在本教程中,我们不会广泛使用此事实,但这在您将遇到的其他 NLP 任务中可能很有用。

BucketIterator

我们将使用的最后torchtext个特定功能是BucketIterator,它很容易使用,因为它以TranslationDataset作为第一个参数。 具体来说,正如文档所说:定义一个迭代器,该迭代器将相似长度的示例批处理在一起。 在为每个新纪元生产新鲜改组的批次时,最大程度地减少所需的填充量。 有关使用的存储过程,请参阅池。

  1. import torch
  2. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  3. BATCH_SIZE = 128
  4. train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
  5. (train_data, valid_data, test_data),
  6. batch_size = BATCH_SIZE,
  7. device = device)

可以像DataLoader``s; below, in the ``trainevaluate函数一样调用这些迭代器,只需使用以下命令即可调用它们:

  1. for i, batch in enumerate(iterator):

每个batch然后具有srctrg属性:

  1. src = batch.src
  2. trg = batch.trg

定义我们的nn.ModuleOptimizer

这大部分是从torchtext角度出发的:构建了数据集并定义了迭代器,本教程的其余部分仅将模型定义为nn.Module以及Optimizer,然后对其进行训练。

具体来说,我们的模型遵循在此处中描述的架构(您可以在此处找到更多注释的版本)。

注意:此模型只是可用于语言翻译的示例模型; 我们选择它是因为它是任务的标准模型,而不是因为它是用于翻译的推荐模型。 如您所知,目前最先进的模型基于“变形金刚”; 您可以在此处看到 PyTorch 的实现 Transformer 层的功能; 特别是,以下模型中使用的“注意”与变压器模型中存在的多头自我注意不同。

  1. import random
  2. from typing import Tuple
  3. import torch.nn as nn
  4. import torch.optim as optim
  5. import torch.nn.functional as F
  6. from torch import Tensor
  7. class Encoder(nn.Module):
  8. def __init__(self,
  9. input_dim: int,
  10. emb_dim: int,
  11. enc_hid_dim: int,
  12. dec_hid_dim: int,
  13. dropout: float):
  14. super().__init__()
  15. self.input_dim = input_dim
  16. self.emb_dim = emb_dim
  17. self.enc_hid_dim = enc_hid_dim
  18. self.dec_hid_dim = dec_hid_dim
  19. self.dropout = dropout
  20. self.embedding = nn.Embedding(input_dim, emb_dim)
  21. self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
  22. self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
  23. self.dropout = nn.Dropout(dropout)
  24. def forward(self,
  25. src: Tensor) -> Tuple[Tensor]:
  26. embedded = self.dropout(self.embedding(src))
  27. outputs, hidden = self.rnn(embedded)
  28. hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
  29. return outputs, hidden
  30. class Attention(nn.Module):
  31. def __init__(self,
  32. enc_hid_dim: int,
  33. dec_hid_dim: int,
  34. attn_dim: int):
  35. super().__init__()
  36. self.enc_hid_dim = enc_hid_dim
  37. self.dec_hid_dim = dec_hid_dim
  38. self.attn_in = (enc_hid_dim * 2) + dec_hid_dim
  39. self.attn = nn.Linear(self.attn_in, attn_dim)
  40. def forward(self,
  41. decoder_hidden: Tensor,
  42. encoder_outputs: Tensor) -> Tensor:
  43. src_len = encoder_outputs.shape[0]
  44. repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)
  45. encoder_outputs = encoder_outputs.permute(1, 0, 2)
  46. energy = torch.tanh(self.attn(torch.cat((
  47. repeated_decoder_hidden,
  48. encoder_outputs),
  49. dim = 2)))
  50. attention = torch.sum(energy, dim=2)
  51. return F.softmax(attention, dim=1)
  52. class Decoder(nn.Module):
  53. def __init__(self,
  54. output_dim: int,
  55. emb_dim: int,
  56. enc_hid_dim: int,
  57. dec_hid_dim: int,
  58. dropout: int,
  59. attention: nn.Module):
  60. super().__init__()
  61. self.emb_dim = emb_dim
  62. self.enc_hid_dim = enc_hid_dim
  63. self.dec_hid_dim = dec_hid_dim
  64. self.output_dim = output_dim
  65. self.dropout = dropout
  66. self.attention = attention
  67. self.embedding = nn.Embedding(output_dim, emb_dim)
  68. self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
  69. self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)
  70. self.dropout = nn.Dropout(dropout)
  71. def _weighted_encoder_rep(self,
  72. decoder_hidden: Tensor,
  73. encoder_outputs: Tensor) -> Tensor:
  74. a = self.attention(decoder_hidden, encoder_outputs)
  75. a = a.unsqueeze(1)
  76. encoder_outputs = encoder_outputs.permute(1, 0, 2)
  77. weighted_encoder_rep = torch.bmm(a, encoder_outputs)
  78. weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)
  79. return weighted_encoder_rep
  80. def forward(self,
  81. input: Tensor,
  82. decoder_hidden: Tensor,
  83. encoder_outputs: Tensor) -> Tuple[Tensor]:
  84. input = input.unsqueeze(0)
  85. embedded = self.dropout(self.embedding(input))
  86. weighted_encoder_rep = self._weighted_encoder_rep(decoder_hidden,
  87. encoder_outputs)
  88. rnn_input = torch.cat((embedded, weighted_encoder_rep), dim = 2)
  89. output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))
  90. embedded = embedded.squeeze(0)
  91. output = output.squeeze(0)
  92. weighted_encoder_rep = weighted_encoder_rep.squeeze(0)
  93. output = self.out(torch.cat((output,
  94. weighted_encoder_rep,
  95. embedded), dim = 1))
  96. return output, decoder_hidden.squeeze(0)
  97. class Seq2Seq(nn.Module):
  98. def __init__(self,
  99. encoder: nn.Module,
  100. decoder: nn.Module,
  101. device: torch.device):
  102. super().__init__()
  103. self.encoder = encoder
  104. self.decoder = decoder
  105. self.device = device
  106. def forward(self,
  107. src: Tensor,
  108. trg: Tensor,
  109. teacher_forcing_ratio: float = 0.5) -> Tensor:
  110. batch_size = src.shape[1]
  111. max_len = trg.shape[0]
  112. trg_vocab_size = self.decoder.output_dim
  113. outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
  114. encoder_outputs, hidden = self.encoder(src)
  115. # first input to the decoder is the <sos> token
  116. output = trg[0,:]
  117. for t in range(1, max_len):
  118. output, hidden = self.decoder(output, hidden, encoder_outputs)
  119. outputs[t] = output
  120. teacher_force = random.random() < teacher_forcing_ratio
  121. top1 = output.max(1)[1]
  122. output = (trg[t] if teacher_force else top1)
  123. return outputs
  124. INPUT_DIM = len(SRC.vocab)
  125. OUTPUT_DIM = len(TRG.vocab)
  126. # ENC_EMB_DIM = 256
  127. # DEC_EMB_DIM = 256
  128. # ENC_HID_DIM = 512
  129. # DEC_HID_DIM = 512
  130. # ATTN_DIM = 64
  131. # ENC_DROPOUT = 0.5
  132. # DEC_DROPOUT = 0.5
  133. ENC_EMB_DIM = 32
  134. DEC_EMB_DIM = 32
  135. ENC_HID_DIM = 64
  136. DEC_HID_DIM = 64
  137. ATTN_DIM = 8
  138. ENC_DROPOUT = 0.5
  139. DEC_DROPOUT = 0.5
  140. enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)
  141. attn = Attention(ENC_HID_DIM, DEC_HID_DIM, ATTN_DIM)
  142. dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)
  143. model = Seq2Seq(enc, dec, device).to(device)
  144. def init_weights(m: nn.Module):
  145. for name, param in m.named_parameters():
  146. if 'weight' in name:
  147. nn.init.normal_(param.data, mean=0, std=0.01)
  148. else:
  149. nn.init.constant_(param.data, 0)
  150. model.apply(init_weights)
  151. optimizer = optim.Adam(model.parameters())
  152. def count_parameters(model: nn.Module):
  153. return sum(p.numel() for p in model.parameters() if p.requires_grad)
  154. print(f'The model has {count_parameters(model):,} trainable parameters')

Out:

  1. The model has 1,856,685 trainable parameters

注意:特别是在对语言翻译模型的性能进行评分时,我们必须告诉nn.CrossEntropyLoss函数忽略仅填充目标的索引。

  1. PAD_IDX = TRG.vocab.stoi['<pad>']
  2. criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)

最后,我们可以训练和评估该模型:

  1. import math
  2. import time
  3. def train(model: nn.Module,
  4. iterator: BucketIterator,
  5. optimizer: optim.Optimizer,
  6. criterion: nn.Module,
  7. clip: float):
  8. model.train()
  9. epoch_loss = 0
  10. for _, batch in enumerate(iterator):
  11. src = batch.src
  12. trg = batch.trg
  13. optimizer.zero_grad()
  14. output = model(src, trg)
  15. output = output[1:].view(-1, output.shape[-1])
  16. trg = trg[1:].view(-1)
  17. loss = criterion(output, trg)
  18. loss.backward()
  19. torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
  20. optimizer.step()
  21. epoch_loss += loss.item()
  22. return epoch_loss / len(iterator)
  23. def evaluate(model: nn.Module,
  24. iterator: BucketIterator,
  25. criterion: nn.Module):
  26. model.eval()
  27. epoch_loss = 0
  28. with torch.no_grad():
  29. for _, batch in enumerate(iterator):
  30. src = batch.src
  31. trg = batch.trg
  32. output = model(src, trg, 0) #turn off teacher forcing
  33. output = output[1:].view(-1, output.shape[-1])
  34. trg = trg[1:].view(-1)
  35. loss = criterion(output, trg)
  36. epoch_loss += loss.item()
  37. return epoch_loss / len(iterator)
  38. def epoch_time(start_time: int,
  39. end_time: int):
  40. elapsed_time = end_time - start_time
  41. elapsed_mins = int(elapsed_time / 60)
  42. elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
  43. return elapsed_mins, elapsed_secs
  44. N_EPOCHS = 10
  45. CLIP = 1
  46. best_valid_loss = float('inf')
  47. for epoch in range(N_EPOCHS):
  48. start_time = time.time()
  49. train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
  50. valid_loss = evaluate(model, valid_iterator, criterion)
  51. end_time = time.time()
  52. epoch_mins, epoch_secs = epoch_time(start_time, end_time)
  53. print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
  54. print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
  55. print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}')
  56. test_loss = evaluate(model, test_iterator, criterion)
  57. print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')

Out:

  1. Epoch: 01 | Time: 0m 35s
  2. Train Loss: 5.667 | Train PPL: 289.080
  3. Val. Loss: 5.201 | Val. PPL: 181.371
  4. Epoch: 02 | Time: 0m 35s
  5. Train Loss: 4.968 | Train PPL: 143.728
  6. Val. Loss: 5.096 | Val. PPL: 163.375
  7. Epoch: 03 | Time: 0m 35s
  8. Train Loss: 4.720 | Train PPL: 112.221
  9. Val. Loss: 4.989 | Val. PPL: 146.781
  10. Epoch: 04 | Time: 0m 35s
  11. Train Loss: 4.586 | Train PPL: 98.094
  12. Val. Loss: 4.841 | Val. PPL: 126.612
  13. Epoch: 05 | Time: 0m 35s
  14. Train Loss: 4.430 | Train PPL: 83.897
  15. Val. Loss: 4.809 | Val. PPL: 122.637
  16. Epoch: 06 | Time: 0m 35s
  17. Train Loss: 4.331 | Train PPL: 75.997
  18. Val. Loss: 4.797 | Val. PPL: 121.168
  19. Epoch: 07 | Time: 0m 35s
  20. Train Loss: 4.240 | Train PPL: 69.434
  21. Val. Loss: 4.694 | Val. PPL: 109.337
  22. Epoch: 08 | Time: 0m 35s
  23. Train Loss: 4.116 | Train PPL: 61.326
  24. Val. Loss: 4.714 | Val. PPL: 111.452
  25. Epoch: 09 | Time: 0m 35s
  26. Train Loss: 4.004 | Train PPL: 54.815
  27. Val. Loss: 4.563 | Val. PPL: 95.835
  28. Epoch: 10 | Time: 0m 36s
  29. Train Loss: 3.922 | Train PPL: 50.519
  30. Val. Loss: 4.452 | Val. PPL: 85.761
  31. | Test Loss: 4.456 | Test PPL: 86.155 |

下一步

  • 在上查看使用torchtext 的 Ben Trevett 其余教程。
  • 敬请关注使用其他torchtext功能以及nn.Transformer通过下一个单词预测进行语言建模的教程!

脚本的总运行时间:(6 分钟 10.266 秒)

Download Python source code: torchtext_translation_tutorial.py Download Jupyter notebook: torchtext_translation_tutorial.ipynb

由狮身人面像画廊生成的画廊