LinkedBlockingQueue是一个基于链表实现的阻塞队列,默认大小是Integer.MAX_VALUE
关键的成员变量:
// 链表头 本身是不存储任何元素的,初始化时item指向nulltransient Node<E> head;// 链表尾private transient Node<E> last;// take锁 锁分离,提高效率private final ReentrantLock takeLock = new ReentrantLock();// notEmpty条件// 当队列无元素时,take锁会阻塞在notEmpty条件上,等待其它线程唤醒private final Condition notEmpty = takeLock.newCondition();// put锁private final ReentrantLock putLock = new ReentrantLock();// notFull条件// 当队列满了时,put锁会会阻塞在notFull上,等待其它线程唤醒private final Condition notFull = putLock.newCondition();
构造方法中构造了链表结构
public LinkedBlockingQueue(int capacity) {if (capacity <= 0) throw new IllegalArgumentException();this.capacity = capacity;// 初始化head和last指针为空值节点last = head = new Node<E>(null);}
入队put方法
public void put(E e) throws InterruptedException {// 不允许null元素if (e == null) throw new NullPointerException();int c = ‐1;// 新建一个节点Node<E> node = new Node<E>(e);final ReentrantLock putLock = this.putLock;final AtomicInteger count = this.count;// 使用put锁加锁putLock.lockInterruptibly();try {// 如果队列满了,就阻塞在notFull上等待被其它线程唤醒(阻塞生产者线程)while (count.get() == capacity) {notFull.await();}// 队列不满,就入队enqueue(node);c = count.getAndIncrement();// 队列长度加1,返回原值// 如果现队列长度小于容量,notFull条件队列转同步队列,准备唤醒一个阻塞在notFull条件上的线程(可以继续入队)// 这里为啥要唤醒一下呢?// 因为可能有很多线程阻塞在notFull这个条件上,而取元素时只有取之前队列是满的才会唤醒notFull,此处不用等到取元素时才唤醒if (c + 1 < capacity)notFull.signal();} finally {putLock.unlock(); // 真正唤醒生产者线程}// 如果原队列长度为0,现在加了一个元素后立即唤醒阻塞在notEmpty上的线程if (c == 0)signalNotEmpty();}
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();// 加take锁
try {
notEmpty.signal();// notEmpty条件队列转同步队列,准备唤醒阻塞在notEmpty上的线程
} finally {
takeLock.unlock(); // 真正唤醒消费者线程
}
}
链表入队,操作的是last节点
private void enqueue(Node<E> node) {
// 直接加到last后面,last指向入队元素
last = last.next = node;
}
出队take方法
public E take() throws InterruptedException {
E x;
int c = ‐1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
// 使用takeLock加锁
takeLock.lockInterruptibly();
try {
// 如果队列无元素,则阻塞在notEmpty条件上(消费者线程阻塞)
while (count.get() == 0) {
notEmpty.await();
}
// 否则,出队
x = dequeue();
c = count.getAndDecrement();//长度‐1,返回原值
if (c > 1)
// 如果取之前队列长度大于1,notEmpty条件队列转同步队列,准备唤醒阻塞在notEmpty上的线程,原因与入队同理
notEmpty.signal();
} finally {
takeLock.unlock(); // 真正唤醒消费者线程
}
// 为什么队列是满的才唤醒阻塞在notFull上的线程呢?
// 因为唤醒是需要加putLock的,这是为了减少锁的次数,所以,这里索性在放完元素就检测一下,未满就唤醒其它notFull上的线程,
// 这也是锁分离带来的代价
if (c == capacity)
signalNotFull();
return x;
}
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();// notFull条件队列转同步队列,准备唤醒阻塞在notFull上的线程
} finally {
putLock.unlock(); // 解锁,这才会真正的唤醒生产者线程
}
}
链表出队,操作head节点,与入队操作一起保证队列的先进先出
private E dequeue() {
// head节点本身是不存储任何元素的
// 这里把head删除,并把head下一个节点作为新的值
// 并把其值置空,返回原来的值
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // 方便GC
head = first;
E x = first.item;
first.item = null;
return x;
}
LinkedBlockingQueue与ArrayBlockingQueue对比
1)存储容器数据结构不同,ArrayBlockingQueue采用的是数组,而 LinkedBlockingQueue采用的是链表。
2)队列大小不同,ArrayBlockingQueue是有界的初始化指定大小,而 LinkedBlockingQueue默认是Integer.MAX_VALUE,也可以指定大小
3)ArrayBlockingQueue添加操作和移除操作采用的同一个ReenterLock锁,而 LinkedBlockingQueue实现的队列中的锁是分离的,其添加采用的是putLock,移除采用 的则是takeLock,这样能大大提高队列的吞吐量
