实验要求:
- 鸢尾花有四个特征,分别为:萼片长度(Sepal Length)、萼片宽度(Sepal Width)、花瓣长度(Petal Length)、花瓣宽度(Petal Width),单位为厘米。
- 鸢尾花分为山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和为吉尼亚鸢尾(Iris Virginica)三种,在数据集最后一列(Class)分别以0、1、2三种标签表示。
- 请将数据有缺失的行删除,请将出现明显错误数据的行删除(负数等)。
- 求出每种鸢尾花萼片长度的平均值、中位数和标准差。
- 归一化:创建一种标准化形式的鸢尾花特征数据,其值正好介于0和1之间,这样最小值为0,最大值为1。
- 将数据清洗及归一化后的结果保存为新的csv文件。
上机实现
添加需要使用到的包
import pandas as pdimport numpy as npimport osimport csvfrom sklearn import preprocessingfrom sklearn import datasets
导入需要用到的脏数据集
iris.csv
data_dir = "D:\\DataAnalysis"fname = os.path.join(data_dir,"iris.csv")f = open(fname,encoding='utf-8')df = pd.read_csv(f)f.close()print(type(df))
<class 'pandas.core.frame.DataFrame'>
df
|
Sepal Length |
Sepal Width |
Petal Length |
Petal Width |
Class |
| 0 |
0.0 |
NaN |
NaN |
NaN |
NaN |
| 1 |
5.1 |
3.5 |
1.4 |
0.2 |
0.0 |
| 2 |
4.9 |
3.0 |
1.4 |
0.2 |
0.0 |
| 3 |
3.0 |
NaN |
NaN |
NaN |
NaN |
| 4 |
4.7 |
3.2 |
1.3 |
0.2 |
0.0 |
| 5 |
4.6 |
3.1 |
1.5 |
0.2 |
0.0 |
| 6 |
5.0 |
3.6 |
1.4 |
0.2 |
0.0 |
| 7 |
5.4 |
3.9 |
1.7 |
0.4 |
0.0 |
| 8 |
NaN |
4.0 |
2.3 |
0.3 |
NaN |
| 9 |
4.6 |
3.4 |
1.4 |
0.3 |
0.0 |
| 10 |
5.0 |
3.4 |
1.5 |
0.2 |
0.0 |
| 11 |
4.4 |
2.9 |
1.4 |
0.2 |
0.0 |
| 12 |
4.9 |
3.1 |
1.5 |
NaN |
0.0 |
| 13 |
4.9 |
3.1 |
1.5 |
0.1 |
0.0 |
| 14 |
5.4 |
3.7 |
1.5 |
0.2 |
0.0 |
| 15 |
4.8 |
3.4 |
1.6 |
0.2 |
0.0 |
| 16 |
4.8 |
3.0 |
1.4 |
0.1 |
0.0 |
| 17 |
4.3 |
3.0 |
1.1 |
0.1 |
0.0 |
| 18 |
5.8 |
4.0 |
1.2 |
0.2 |
0.0 |
| 19 |
5.7 |
4.4 |
1.5 |
0.4 |
0.0 |
| 20 |
5.7 |
-9.0 |
1.5 |
0.4 |
0.0 |
| 21 |
5.4 |
3.9 |
1.3 |
0.4 |
0.0 |
| 22 |
5.1 |
3.5 |
1.4 |
0.3 |
0.0 |
| 23 |
5.7 |
3.8 |
1.7 |
0.3 |
0.0 |
| 24 |
5.1 |
3.8 |
1.5 |
0.3 |
0.0 |
| 25 |
5.4 |
3.4 |
1.7 |
0.2 |
NaN |
| 26 |
5.4 |
3.4 |
1.7 |
0.2 |
0.0 |
| 27 |
5.1 |
3.7 |
1.5 |
0.4 |
0.0 |
| 28 |
4.6 |
3.6 |
1.0 |
0.2 |
0.0 |
| 29 |
5.1 |
3.3 |
1.7 |
0.5 |
0.0 |
| … |
… |
… |
… |
… |
… |
| 127 |
5.6 |
2.8 |
4.9 |
2.0 |
2.0 |
| 128 |
7.7 |
2.8 |
6.7 |
2.0 |
2.0 |
| 129 |
6.3 |
2.7 |
4.9 |
1.8 |
2.0 |
| 130 |
6.7 |
3.3 |
5.7 |
2.1 |
2.0 |
| 131 |
7.2 |
3.2 |
6.0 |
1.8 |
2.0 |
| 132 |
6.2 |
2.8 |
4.8 |
1.8 |
2.0 |
| 133 |
6.1 |
3.0 |
4.9 |
1.8 |
2.0 |
| 134 |
6.4 |
2.8 |
5.6 |
2.1 |
2.0 |
| 135 |
7.2 |
3.0 |
5.8 |
1.6 |
2.0 |
| 136 |
7.4 |
2.8 |
6.1 |
1.9 |
2.0 |
| 137 |
7.9 |
3.8 |
6.4 |
NaN |
NaN |
| 138 |
7.9 |
3.8 |
6.4 |
2.0 |
2.0 |
| 139 |
6.4 |
2.8 |
5.6 |
2.2 |
2.0 |
| 140 |
6.3 |
2.8 |
5.1 |
1.5 |
2.0 |
| 141 |
6.1 |
2.6 |
5.6 |
1.4 |
2.0 |
| 142 |
7.7 |
3.0 |
-6.1 |
2.3 |
2.0 |
| 143 |
6.3 |
3.4 |
NaN |
2.4 |
2.0 |
| 144 |
6.4 |
3.1 |
5.5 |
1.8 |
2.0 |
| 145 |
6.0 |
3.0 |
4.8 |
1.8 |
2.0 |
| 146 |
6.9 |
3.1 |
5.4 |
2.1 |
2.0 |
| 147 |
6.7 |
3.1 |
5.6 |
2.4 |
2.0 |
| 148 |
6.9 |
3.1 |
5.1 |
2.3 |
2.0 |
| 149 |
5.8 |
2.7 |
5.1 |
1.9 |
2.0 |
| 150 |
6.8 |
3.2 |
5.9 |
-2.3 |
2.0 |
| 151 |
6.7 |
3.3 |
5.7 |
2.5 |
2.0 |
| 152 |
6.7 |
3.0 |
5.2 |
2.3 |
2.0 |
| 153 |
6.3 |
2.5 |
5.0 |
1.9 |
2.0 |
| 154 |
6.5 |
3.0 |
NaN |
2.0 |
2.0 |
| 155 |
6.2 |
3.4 |
5.4 |
2.3 |
2.0 |
| 156 |
5.9 |
3.0 |
5.1 |
1.8 |
2.0 |
157 rows × 5 columns
数据预处理
使用dropna()删除数据有缺失的行
print(df.isnull())df = df.dropna()df
Sepal Length Sepal Width Petal Length Petal Width Class0 False True True True True1 False False False False False2 False False False False False3 False True True True True4 False False False False False5 False False False False False6 False False False False False7 False False False False False8 True False False False True9 False False False False False10 False False False False False11 False False False False False12 False False False True False13 False False False False False14 False False False False False15 False False False False False16 False False False False False17 False False False False False18 False False False False False19 False False False False False20 False False False False False21 False False False False False22 False False False False False23 False False False False False24 False False False False False25 False False False False True26 False False False False False27 False False False False False28 False False False False False29 False False False False False.. ... ... ... ... ...127 False False False False False128 False False False False False129 False False False False False130 False False False False False131 False False False False False132 False False False False False133 False False False False False134 False False False False False135 False False False False False136 False False False False False137 False False False True True138 False False False False False139 False False False False False140 False False False False False141 False False False False False142 False False False False False143 False False True False False144 False False False False False145 False False False False False146 False False False False False147 False False False False False148 False False False False False149 False False False False False150 False False False False False151 False False False False False152 False False False False False153 False False False False False154 False False True False False155 False False False False False156 False False False False False[157 rows x 5 columns]
预览以下处理好的数据集:
|
Sepal Length |
Sepal Width |
Petal Length |
Petal Width |
Class |
| 1 |
5.1 |
3.5 |
1.4 |
0.2 |
0.0 |
| 2 |
4.9 |
3.0 |
1.4 |
0.2 |
0.0 |
| 4 |
4.7 |
3.2 |
1.3 |
0.2 |
0.0 |
| 5 |
4.6 |
3.1 |
1.5 |
0.2 |
0.0 |
| 6 |
5.0 |
3.6 |
1.4 |
0.2 |
0.0 |
| 7 |
5.4 |
3.9 |
1.7 |
0.4 |
0.0 |
| 9 |
4.6 |
3.4 |
1.4 |
0.3 |
0.0 |
| 10 |
5.0 |
3.4 |
1.5 |
0.2 |
0.0 |
| 11 |
4.4 |
2.9 |
1.4 |
0.2 |
0.0 |
| 13 |
4.9 |
3.1 |
1.5 |
0.1 |
0.0 |
| 14 |
5.4 |
3.7 |
1.5 |
0.2 |
0.0 |
| 15 |
4.8 |
3.4 |
1.6 |
0.2 |
0.0 |
| 16 |
4.8 |
3.0 |
1.4 |
0.1 |
0.0 |
| 17 |
4.3 |
3.0 |
1.1 |
0.1 |
0.0 |
| 18 |
5.8 |
4.0 |
1.2 |
0.2 |
0.0 |
| 19 |
5.7 |
4.4 |
1.5 |
0.4 |
0.0 |
| 20 |
5.7 |
-9.0 |
1.5 |
0.4 |
0.0 |
| 21 |
5.4 |
3.9 |
1.3 |
0.4 |
0.0 |
| 22 |
5.1 |
3.5 |
1.4 |
0.3 |
0.0 |
| 23 |
5.7 |
3.8 |
1.7 |
0.3 |
0.0 |
| 24 |
5.1 |
3.8 |
1.5 |
0.3 |
0.0 |
| 26 |
5.4 |
3.4 |
1.7 |
0.2 |
0.0 |
| 27 |
5.1 |
3.7 |
1.5 |
0.4 |
0.0 |
| 28 |
4.6 |
3.6 |
1.0 |
0.2 |
0.0 |
| 29 |
5.1 |
3.3 |
1.7 |
0.5 |
0.0 |
| 30 |
4.8 |
3.4 |
1.9 |
0.2 |
0.0 |
| 31 |
5.0 |
3.0 |
1.6 |
0.2 |
0.0 |
| 32 |
5.0 |
3.4 |
1.6 |
0.4 |
0.0 |
| 33 |
5.2 |
3.5 |
1.5 |
0.2 |
0.0 |
| 34 |
5.2 |
3.4 |
1.4 |
0.2 |
0.0 |
| … |
… |
… |
… |
… |
… |
| 123 |
7.7 |
3.8 |
6.7 |
2.2 |
2.0 |
| 125 |
6.0 |
2.2 |
5.0 |
1.5 |
2.0 |
| 126 |
6.9 |
3.2 |
5.7 |
2.3 |
2.0 |
| 127 |
5.6 |
2.8 |
4.9 |
2.0 |
2.0 |
| 128 |
7.7 |
2.8 |
6.7 |
2.0 |
2.0 |
| 129 |
6.3 |
2.7 |
4.9 |
1.8 |
2.0 |
| 130 |
6.7 |
3.3 |
5.7 |
2.1 |
2.0 |
| 131 |
7.2 |
3.2 |
6.0 |
1.8 |
2.0 |
| 132 |
6.2 |
2.8 |
4.8 |
1.8 |
2.0 |
| 133 |
6.1 |
3.0 |
4.9 |
1.8 |
2.0 |
| 134 |
6.4 |
2.8 |
5.6 |
2.1 |
2.0 |
| 135 |
7.2 |
3.0 |
5.8 |
1.6 |
2.0 |
| 136 |
7.4 |
2.8 |
6.1 |
1.9 |
2.0 |
| 138 |
7.9 |
3.8 |
6.4 |
2.0 |
2.0 |
| 139 |
6.4 |
2.8 |
5.6 |
2.2 |
2.0 |
| 140 |
6.3 |
2.8 |
5.1 |
1.5 |
2.0 |
| 141 |
6.1 |
2.6 |
5.6 |
1.4 |
2.0 |
| 142 |
7.7 |
3.0 |
-6.1 |
2.3 |
2.0 |
| 144 |
6.4 |
3.1 |
5.5 |
1.8 |
2.0 |
| 145 |
6.0 |
3.0 |
4.8 |
1.8 |
2.0 |
| 146 |
6.9 |
3.1 |
5.4 |
2.1 |
2.0 |
| 147 |
6.7 |
3.1 |
5.6 |
2.4 |
2.0 |
| 148 |
6.9 |
3.1 |
5.1 |
2.3 |
2.0 |
| 149 |
5.8 |
2.7 |
5.1 |
1.9 |
2.0 |
| 150 |
6.8 |
3.2 |
5.9 |
-2.3 |
2.0 |
| 151 |
6.7 |
3.3 |
5.7 |
2.5 |
2.0 |
| 152 |
6.7 |
3.0 |
5.2 |
2.3 |
2.0 |
| 153 |
6.3 |
2.5 |
5.0 |
1.9 |
2.0 |
| 155 |
6.2 |
3.4 |
5.4 |
2.3 |
2.0 |
| 156 |
5.9 |
3.0 |
5.1 |
1.8 |
2.0 |
148 rows × 5 columns
进行数据的运算
求出花萼片长度的平均值
df['Sepal Length'].groupby(df['Class']).mean()
Class0.0 5.0196081.0 5.4716002.0 6.572340Name: Sepal Length, dtype: float64
求出花萼片长度的中位数
df['Sepal Length'].groupby(df['Class']).median()
Class0.0 5.001.0 5.852.0 6.50Name: Sepal Length, dtype: float64
求出花萼片长度的标准差
df['Sepal Length'].groupby(df['Class']).std()
Class0.0 0.3622261.0 2.3826932.0 0.633727Name: Sepal Length, dtype: float64
归一化处理
# 建立MinMaxScaler模型对象m_scaler = preprocessing.MinMaxScaler()# 使用 MinMaxScaler 对象 对数据进行归一化处理m_data = m_scaler.fit_transform(df)x=m_data.flatten()print(x)
[0.80028531 0.93283582 0.5859375 0.52083333 0. 0.78601997 0.89552239 0.5859375 0.52083333 0. 0.77175464 0.91044776 0.578125 0.52083333 0. 0.76462197 0.90298507 0.59375 0.52083333 0. 0.79315264 0.94029851 0.5859375 0.52083333 0. 0.82168331 0.96268657 0.609375 0.5625 0. 0.76462197 0.92537313 0.5859375 0.54166667 0. 0.79315264 0.92537313 0.59375 0.52083333 0. 0.75035663 0.8880597 0.5859375 0.52083333 0. 0.78601997 0.90298507 0.59375 0.5 0. 0.82168331 0.94776119 0.59375 0.52083333 0. 0.7788873 0.92537313 0.6015625 0.52083333 0. 0.7788873 0.89552239 0.5859375 0.5 0. 0.74322397 0.89552239 0.5625 0.5 0. 0.85021398 0.97014925 0.5703125 0.52083333 0. 0.84308131 1. 0.59375 0.5625 0. 0.84308131 0. 0.59375 0.5625 0. 0.82168331 0.96268657 0.578125 0.5625 0. 0.80028531 0.93283582 0.5859375 0.54166667 0. 0.84308131 0.95522388 0.609375 0.54166667 0. 0.80028531 0.95522388 0.59375 0.54166667 0. 0.82168331 0.92537313 0.609375 0.52083333 0. 0.80028531 0.94776119 0.59375 0.5625 0. 0.76462197 0.94029851 0.5546875 0.52083333 0. 0.80028531 0.91791045 0.609375 0.58333333 0. 0.7788873 0.92537313 0.625 0.52083333 0. 0.79315264 0.89552239 0.6015625 0.52083333 0. 0.79315264 0.92537313 0.6015625 0.5625 0. 0.80741797 0.93283582 0.59375 0.52083333 0. 0.80741797 0.92537313 0.5859375 0.52083333 0. 0.77175464 0.91044776 0.6015625 0.52083333 0. 0.7788873 0.90298507 0.6015625 0.52083333 0. 0.82168331 0.92537313 0.59375 0.5625 0. 0.80741797 0.97761194 0.59375 0.5 0. 0.82881598 0.98507463 0.5859375 0.52083333 0. 0.78601997 0.90298507 0.59375 0.52083333 0. 0.79315264 0.91044776 0.5703125 0.52083333 0. 0.82881598 0.93283582 0.578125 0.52083333 0. 0.78601997 0.94029851 0.5859375 0.5 0. 0.75035663 0.89552239 0.578125 0.52083333 0. 0.80028531 0.92537313 0.59375 0.52083333 0. 0.79315264 0.93283582 0.578125 0.54166667 0. 0.7574893 0.84328358 0.578125 0.54166667 0. 0.75035663 0.91044776 0.578125 0.52083333 0. 0.79315264 0.93283582 0.6015625 0.60416667 0. 0.80028531 0.95522388 0.625 0.5625 0. 0.7788873 0.89552239 0.5859375 0.54166667 0. 0.80028531 0.95522388 0.6015625 0.52083333 0. 0.76462197 0.91044776 0.5859375 0.52083333 0. 0.81455064 0.94776119 0.59375 0.52083333 0. 0.79315264 0.91791045 0.5859375 0.52083333 0. 0.93580599 0.91044776 0.84375 0.77083333 0.5 0.89300999 0.91044776 0.828125 0.79166667 0.5 0.92867332 0.90298507 0.859375 0.79166667 0.5 0.82881598 0.84328358 0.7890625 0.75 0.5 0.90014265 0.88059701 0.8359375 0.79166667 0.5 0.84308131 0.88059701 0.828125 0.75 0.5 0.88587732 0.91791045 0.84375 0.8125 0.5 0.78601997 0.85074627 0.734375 0.6875 0.5 0.90727532 0.8880597 0.8359375 0.75 0.5 0.80741797 0.87313433 0.78125 0.77083333 0.5 0.79315264 0.82089552 0.75 0.6875 0.5 0.85734665 0.89552239 0.8046875 0.79166667 0.5 0.86447932 0.8358209 0.7890625 0.6875 0.5 0.87161198 0.8880597 0.84375 0.77083333 0.5 0.83594864 0.8880597 0.7578125 0.75 0.5 0.91440799 0.90298507 0.8203125 0.77083333 0.5 0.83594864 0.89552239 0.828125 0.79166667 0.5 0.85021398 0.87313433 0.796875 0.6875 0.5 0.87874465 0.8358209 0.828125 0.79166667 0.5 0.83594864 0.85820896 0.78125 0.70833333 0.5 0.85734665 0.91044776 0.8515625 0.85416667 0.5 0.87161198 0.88059701 0.7890625 0.75 0.5 0.88587732 0.85820896 0.859375 0.79166667 0.5 0.87161198 0.88059701 0.84375 0.72916667 0.5 0.89300999 0.8880597 0.8125 0.75 0.5 0.90727532 0.89552239 0.8203125 0.77083333 0.5 0.92154066 0.88059701 0.8515625 0.77083333 0.5 0.91440799 0.89552239 0.8671875 0.83333333 0.5 0.86447932 0.8880597 0.828125 0.79166667 0.5 0.84308131 0.86567164 0.75 0.6875 0.5 0.04422254 0.85074627 0.7734375 0.70833333 0.5 0.82881598 0.85074627 0.765625 0.6875 0.5 0.85021398 0.87313433 0.78125 0.72916667 0.5 0.86447932 0.87313433 0.875 0.8125 0.5 0.82168331 0.89552239 0.828125 0.79166667 0.5 0.86447932 0.92537313 0.828125 0.8125 0.5 0.91440799 0.90298507 0.84375 0.79166667 0.5 0.88587732 0.84328358 0.8203125 0.75 0.5 0.83594864 0.89552239 0.796875 0.75 0.5 0.82881598 0.85820896 0.7890625 0.75 0.5 0.82881598 0.86567164 0.8203125 0.72916667 0.5 0. 0.44776119 0.8359375 0.77083333 0.5 0.85021398 0.86567164 0.7890625 0.72916667 0.5 0.79315264 0.84328358 0.734375 0.6875 0.5 0.83594864 0.87313433 0.8046875 0.75 0.5 0.84308131 0.89552239 0.8046875 0.72916667 0.5 0.84308131 0.8880597 0.8046875 0.75 0.5 0.87874465 0.8880597 0.8125 0.75 0.5 0.80028531 0.85820896 0.7109375 0.70833333 0.5 0.84308131 0.88059701 0.796875 0.75 0.5 0.88587732 0.91791045 0.9453125 1. 1. 0.85021398 0.87313433 0.875 0.875 1. 0.94293866 0.89552239 0.9375 0.91666667 1. 0.88587732 0.8880597 0.9140625 0.85416667 1. 0.90014265 0.89552239 0.9296875 0.9375 1. 0.978602 0.89552239 0.9921875 0.91666667 1. 0.78601997 0.85820896 0.828125 0.83333333 1. 0.95720399 0.8880597 0.96875 0.85416667 1. 0.91440799 0.85820896 0.9296875 0.85416667 1. 0.95007133 0.94029851 0.953125 1. 1. 0.90014265 0.91044776 0.875 0.89583333 1. 0.89300999 0.87313433 0.890625 0.875 1. 0.92154066 0.89552239 0.90625 0.91666667 1. 0.84308131 0.85820896 0.8671875 0.89583333 1. 0.85021398 0.88059701 0.875 0.97916667 1. 0.89300999 0.91044776 0.890625 0.95833333 1. 0.90014265 0.89552239 0.90625 0.85416667 1. 0.98573466 0.95522388 1. 0.9375 1. 0.86447932 0.8358209 0.8671875 0.79166667 1. 0.92867332 0.91044776 0.921875 0.95833333 1. 0.83594864 0.88059701 0.859375 0.89583333 1. 0.98573466 0.88059701 1. 0.89583333 1. 0.88587732 0.87313433 0.859375 0.85416667 1. 0.91440799 0.91791045 0.921875 0.91666667 1. 0.95007133 0.91044776 0.9453125 0.85416667 1. 0.87874465 0.88059701 0.8515625 0.85416667 1. 0.87161198 0.89552239 0.859375 0.85416667 1. 0.89300999 0.88059701 0.9140625 0.91666667 1. 0.95007133 0.89552239 0.9296875 0.8125 1. 0.96433666 0.88059701 0.953125 0.875 1. 1. 0.95522388 0.9765625 0.89583333 1. 0.89300999 0.88059701 0.9140625 0.9375 1. 0.88587732 0.88059701 0.875 0.79166667 1. 0.87161198 0.86567164 0.9140625 0.77083333 1. 0.98573466 0.89552239 0. 0.95833333 1. 0.89300999 0.90298507 0.90625 0.85416667 1. 0.86447932 0.89552239 0.8515625 0.85416667 1. 0.92867332 0.90298507 0.8984375 0.91666667 1. 0.91440799 0.90298507 0.9140625 0.97916667 1. 0.92867332 0.90298507 0.875 0.95833333 1. 0.85021398 0.87313433 0.875 0.875 1. 0.92154066 0.91044776 0.9375 0. 1. 0.91440799 0.91791045 0.921875 1. 1. 0.91440799 0.89552239 0.8828125 0.95833333 1. 0.88587732 0.85820896 0.8671875 0.875 1. 0.87874465 0.92537313 0.8984375 0.95833333 1. 0.85734665 0.89552239 0.875 0.85416667 1. ]
df.loc[:, "Normalization"] = x[0:len(df)]
D:\Anaconda3\lib\site-packages\pandas\core\indexing.py:362: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self.obj[key] = _infer_fill_value(value)D:\Anaconda3\lib\site-packages\pandas\core\indexing.py:630: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self.obj[item_labels[indexer[info_axis]]] = value
df
|
Sepal Length |
Sepal Width |
Petal Length |
Petal Width |
Class |
Normalization |
| 1 |
5.1 |
3.5 |
1.4 |
0.2 |
0.0 |
0.800285 |
| 2 |
4.9 |
3.0 |
1.4 |
0.2 |
0.0 |
0.932836 |
| 4 |
4.7 |
3.2 |
1.3 |
0.2 |
0.0 |
0.585938 |
| 5 |
4.6 |
3.1 |
1.5 |
0.2 |
0.0 |
0.520833 |
| 6 |
5.0 |
3.6 |
1.4 |
0.2 |
0.0 |
0.000000 |
| 7 |
5.4 |
3.9 |
1.7 |
0.4 |
0.0 |
0.786020 |
| 9 |
4.6 |
3.4 |
1.4 |
0.3 |
0.0 |
0.895522 |
| 10 |
5.0 |
3.4 |
1.5 |
0.2 |
0.0 |
0.585938 |
| 11 |
4.4 |
2.9 |
1.4 |
0.2 |
0.0 |
0.520833 |
| 13 |
4.9 |
3.1 |
1.5 |
0.1 |
0.0 |
0.000000 |
| 14 |
5.4 |
3.7 |
1.5 |
0.2 |
0.0 |
0.771755 |
| 15 |
4.8 |
3.4 |
1.6 |
0.2 |
0.0 |
0.910448 |
| 16 |
4.8 |
3.0 |
1.4 |
0.1 |
0.0 |
0.578125 |
| 17 |
4.3 |
3.0 |
1.1 |
0.1 |
0.0 |
0.520833 |
| 18 |
5.8 |
4.0 |
1.2 |
0.2 |
0.0 |
0.000000 |
| 19 |
5.7 |
4.4 |
1.5 |
0.4 |
0.0 |
0.764622 |
| 20 |
5.7 |
-9.0 |
1.5 |
0.4 |
0.0 |
0.902985 |
| 21 |
5.4 |
3.9 |
1.3 |
0.4 |
0.0 |
0.593750 |
| 22 |
5.1 |
3.5 |
1.4 |
0.3 |
0.0 |
0.520833 |
| 23 |
5.7 |
3.8 |
1.7 |
0.3 |
0.0 |
0.000000 |
| 24 |
5.1 |
3.8 |
1.5 |
0.3 |
0.0 |
0.793153 |
| 26 |
5.4 |
3.4 |
1.7 |
0.2 |
0.0 |
0.940299 |
| 27 |
5.1 |
3.7 |
1.5 |
0.4 |
0.0 |
0.585938 |
| 28 |
4.6 |
3.6 |
1.0 |
0.2 |
0.0 |
0.520833 |
| 29 |
5.1 |
3.3 |
1.7 |
0.5 |
0.0 |
0.000000 |
| 30 |
4.8 |
3.4 |
1.9 |
0.2 |
0.0 |
0.821683 |
| 31 |
5.0 |
3.0 |
1.6 |
0.2 |
0.0 |
0.962687 |
| 32 |
5.0 |
3.4 |
1.6 |
0.4 |
0.0 |
0.609375 |
| 33 |
5.2 |
3.5 |
1.5 |
0.2 |
0.0 |
0.562500 |
| 34 |
5.2 |
3.4 |
1.4 |
0.2 |
0.0 |
0.000000 |
| … |
… |
… |
… |
… |
… |
… |
| 123 |
7.7 |
3.8 |
6.7 |
2.2 |
2.0 |
0.520833 |
| 125 |
6.0 |
2.2 |
5.0 |
1.5 |
2.0 |
0.000000 |
| 126 |
6.9 |
3.2 |
5.7 |
2.3 |
2.0 |
0.800285 |
| 127 |
5.6 |
2.8 |
4.9 |
2.0 |
2.0 |
0.917910 |
| 128 |
7.7 |
2.8 |
6.7 |
2.0 |
2.0 |
0.609375 |
| 129 |
6.3 |
2.7 |
4.9 |
1.8 |
2.0 |
0.583333 |
| 130 |
6.7 |
3.3 |
5.7 |
2.1 |
2.0 |
0.000000 |
| 131 |
7.2 |
3.2 |
6.0 |
1.8 |
2.0 |
0.778887 |
| 132 |
6.2 |
2.8 |
4.8 |
1.8 |
2.0 |
0.925373 |
| 133 |
6.1 |
3.0 |
4.9 |
1.8 |
2.0 |
0.625000 |
| 134 |
6.4 |
2.8 |
5.6 |
2.1 |
2.0 |
0.520833 |
| 135 |
7.2 |
3.0 |
5.8 |
1.6 |
2.0 |
0.000000 |
| 136 |
7.4 |
2.8 |
6.1 |
1.9 |
2.0 |
0.793153 |
| 138 |
7.9 |
3.8 |
6.4 |
2.0 |
2.0 |
0.895522 |
| 139 |
6.4 |
2.8 |
5.6 |
2.2 |
2.0 |
0.601562 |
| 140 |
6.3 |
2.8 |
5.1 |
1.5 |
2.0 |
0.520833 |
| 141 |
6.1 |
2.6 |
5.6 |
1.4 |
2.0 |
0.000000 |
| 142 |
7.7 |
3.0 |
-6.1 |
2.3 |
2.0 |
0.793153 |
| 144 |
6.4 |
3.1 |
5.5 |
1.8 |
2.0 |
0.925373 |
| 145 |
6.0 |
3.0 |
4.8 |
1.8 |
2.0 |
0.601562 |
| 146 |
6.9 |
3.1 |
5.4 |
2.1 |
2.0 |
0.562500 |
| 147 |
6.7 |
3.1 |
5.6 |
2.4 |
2.0 |
0.000000 |
| 148 |
6.9 |
3.1 |
5.1 |
2.3 |
2.0 |
0.807418 |
| 149 |
5.8 |
2.7 |
5.1 |
1.9 |
2.0 |
0.932836 |
| 150 |
6.8 |
3.2 |
5.9 |
-2.3 |
2.0 |
0.593750 |
| 151 |
6.7 |
3.3 |
5.7 |
2.5 |
2.0 |
0.520833 |
| 152 |
6.7 |
3.0 |
5.2 |
2.3 |
2.0 |
0.000000 |
| 153 |
6.3 |
2.5 |
5.0 |
1.9 |
2.0 |
0.807418 |
| 155 |
6.2 |
3.4 |
5.4 |
2.3 |
2.0 |
0.925373 |
| 156 |
5.9 |
3.0 |
5.1 |
1.8 |
2.0 |
0.585938 |
148 rows × 6 columns
保存为新的csv文件
df.to_csv('data2.csv',index=True)
data2.csv