配置优化

zookeeper.session.timeout

默认值:3分钟(180000ms)

说明:RegionServer与Zookeeper间的连接超时时间。当超时时间到后,ReigonServer会被Zookeeper从RS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.

调优:
这个timeout决定了RegionServer是否能够及时的failover。设置成1分钟或更低,可以减少因等待超时而被延长的failover时间。

不过需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断,crash等故障,运维可快速介入),如果调低timeout时间,反而会得不偿失。因为当ReigonServer被正式从RS集群中移除时,HMaster就开始做balance了(让其他RS根据故障机器记录的WAL日志进行恢复)。当故障的RS在人工介入恢复后,这个balance动作是毫无意义的,反而会使负载不均匀,给RS带来更多负担。特别是那些固定分配regions的场景。

hbase.regionserver.handler.count

默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。

较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。

较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。

这里需要注意的是如果server的region数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging,可以同时监控每次请求的内存消耗和GC的状况,最后通过多次压测结果来合理调节IO线程数。

hbase.hregion.max.filesize

默认值:256M
说明:在当前ReigonServer上单个Reigon的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的region。
调优:
小region对split和compaction友好,因为拆分region或compact小region里的storefile速度很快,内存占用低。缺点是split和compaction会很频繁。

特别是数量较多的小region不停地split, compaction,会导致集群响应时间波动很大,region数量太多不仅给管理上带来麻烦,甚至会引发一些Hbase的bug。

一般512以下的都算小region。
大region,则不太适合经常split和compaction,因为做一次compact和split会产生较长时间的停顿,对应用的读写性能冲击非常大。此外,大region意味着较大的storefile,compaction时对内存也是一个挑战。

当然,大region也有其用武之地。如果你的应用场景中,某个时间点的访问量较低,那么在此时做compact和split,既能顺利完成split和compaction,又能保证绝大多数时间平稳的读写性能。
既然split和compaction如此影响性能,有没有办法去掉?

compaction是无法避免的,split倒是可以从自动调整为手动。

只要通过将这个参数值调大到某个很难达到的值,比如100G,就可以间接禁用自动split(RegionServer不会对未到达100G的region做split)。

再配合RegionSplitter这个工具,在需要split时,手动split。

手动split在灵活性和稳定性上比起自动split要高很多,相反,管理成本增加不多,比较推荐online实时系统使用。
内存方面,小region在设置memstore的大小值上比较灵活,大region则过大过小都不行,过大会导致flush时app的IO wait增高,过小则因store file过多影响读性能。

hbase.regionserver.global.memstore.upperLimit/lowerLimit

默认值:0.4/0.35

upperlimit说明:hbase.hregion.memstore.flush.size
这个参数的作用是当单个Region内所有的memstore大小总和超过指定值时,flush该region的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模式来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。

这个参数的作用是防止内存占用过大,当ReigonServer内所有region的memstores所占用内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些region以释放所有memstore占用的内存。

lowerLimit说明: 同upperLimit,只不过lowerLimit在所有region的memstores所占用内存达到Heap的35%时,不flush所有的memstore。

它会找一个memstore内存占用最大的region,做个别flush,此时写更新还是会被block。lowerLimit算是一个在所有region强制flush导致性能降低前的补救措施。在日志中,表现为 “** Flush thread woke up with memory above low water.”

调优:这是一个Heap内存保护参数,默认值已经能适用大多数场景。
参数调整会影响读写,如果写的压力大导致经常超过这个阀值,则调小读缓存hfile.block.cache.size增大该阀值,或者Heap余量较多时,不修改读缓存大小。

如果在高压情况下,也没超过这个阀值,那么建议你适当调小这个阀值再做压测,确保触发次数不要太多,然后还有较多Heap余量的时候,调大hfile.block.cache.size提高读性能。

还有一种可能性是?hbase.hregion.memstore.flush.size保持不变,但RS维护了过多的region,要知道 region数量直接影响占用内存的大小。

hfile.block.cache.size

默认值:0.2

说明:storefile的读缓存占用Heap的大小百分比,0.2表示20%。该值直接影响数据读的性能。
调优:当然是越大越好,如果写比读少很多,开到0.4-0.5也没问题。如果读写较均衡,0.3左右。如果写比读多,果断默认吧。设置这个值的时候,你同时要参考?hbase.regionserver.global.memstore.upperLimit?,该值是memstore占heap的最大百分比,两个参数一个影响读,一个影响写。如果两值加起来超过80-90%,会有OOM的风险,谨慎设置。
hbase.hstore.blockingStoreFiles
默认值:7

说明:在flush时,当一个region中的Store(Coulmn Family)内有超过7个storefile时,则block所有的写请求进行compaction,以减少storefile数量。

调优:block写请求会严重影响当前regionServer的响应时间,但过多的storefile也会影响读性能。从实际应用来看,为了获取较平滑的响应时间,可将值设为无限大。如果能容忍响应时间出现较大的波峰波谷,那么默认或根据自身场景调整即可。

hbase.hregion.memstore.block.multiplier

默认值:2

说明:当一个region里的memstore占用内存大小超过hbase.hregion.memstore.flush.size两倍的大小时,block该region的所有请求,进行flush,释放内存。

虽然我们设置了region所占用的memstores总内存大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个200M的数据,此时memstore的大小会瞬间暴涨到超过预期的hbase.hregion.memstore.flush.size的几倍。这个参数的作用是当memstore的大小增至超过hbase.hregion.memstore.flush.size 2倍时,block所有请求,遏制风险进一步扩大。

调优: 这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。

hbase.hregion.memstore.mslab.enabled

默认值:true

说明:减少因内存碎片导致的Full GC,提高整体性能。

调优:详见 http://kenwublog.com/avoid-full-gc-in-hbase-using-arena-allocation

其他

启用LZO压缩

LZO对比Hbase默认的GZip,前者性能较高,后者压缩比较高,具体参见?Using LZO Compression 。对于想提高HBase读写性能的开发者,采用LZO是比较好的选择。对于非常在乎存储空间的开发者,则建议保持默认。

不要在一张表里定义太多的Column Family

Hbase目前不能良好的处理超过包含2-3个CF的表。
因为某个CF在flush发生时,它邻近的CF也会因关联效应被触发flush,最终导致系统产生更多IO

批量导入

在批量导入数据到Hbase前,你可以通过预先创建regions,来平衡数据的负载。

避免CMS concurrent mode failure

HBase使用CMS GC。默认触发GC的时机是当年老代内存达到90%的时候,这个百分比由 -XX:CMSInitiatingOccupancyFraction=N 这个参数来设置。concurrent mode failed发生在这样一个场景:

当年老代内存达到90%的时候,CMS开始进行并发垃圾收集,于此同时,新生代还在迅速不断地晋升对象到年老代。当年老代CMS还未完成并发标记时,年老代满了,悲剧就发生了。CMS因为没内存可用不得不暂停mark,并触发一次stop the world(挂起所有jvm线程),然后采用单线程拷贝方式清理所有垃圾对象。这个过程会非常漫长。为了避免出现concurrent mode failed,建议让GC在未到90%时,就触发。

通过设置?-XX:CMSInitiatingOccupancyFraction=N

这个百分比, 可以简单的这么计算。如果你的?hfile.block.cache.size 和?hbase.regionserver.global.memstore.upperLimit 加起来有60%(默认),那么你可以设置 70-80,一般高10%左右差不多。

Hbase客户端优化

AutoFlush

将HTable的setAutoFlush设为false,可以支持客户端批量更新。即当Put填满客户端flush缓存时,才发送到服务端。

默认是true。

Scan Caching

scanner一次缓存多少数据来scan(从服务端一次抓多少数据回来scan)
默认值是 1,一次只取一条。

Scan Attribute Selection

scan时建议指定需要的Column Family,减少通信量,否则scan操作默认会返回整个row的所有数据(所有Coulmn Family)。

Close ResultScanners

通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。

Optimal Loading of Row Keys

当你scan一张表的时候,返回结果只需要row key(不需要CF, qualifier,values,timestaps)时,你可以在scan实例中添加一个filterList,并设置 MUST_PASS_ALL操作,filterList中add?FirstKeyOnlyFilter或KeyOnlyFilter。这样可以减少网络通信量。

Turn off WAL on Puts

当Put某些非重要数据时,你可以设置writeToWAL(false),来进一步提高写性能。writeToWAL(false)会在Put时放弃写WAL log。风险是,当RegionServer宕机时,可能你刚才Put的那些数据会丢失,且无法恢复。

启用Bloom Filter

Bloom Filter通过空间换时间,提高读操作性能

总结

hbase.hregion.max.filesize应该设置多少合适

默认值:256M

说明:Maximum HStoreFile size. If any one of a column families’ HStoreFiles has grown to exceed this value, the hosting HRegion is split in two.
HStoreFile的最大值。如果任何一个Column Family(或者说HStore)的HStoreFiles的大小超过这个值,那么,其所属的HRegion就会Split成两个。

调优:
hbase中hfile的默认最大值(hbase.hregion.max.filesize)是256MB,而google的bigtable论文中对tablet的最大值也推荐为100-200MB,这个大小有什么秘密呢?

众所周知hbase中数据一开始会写入memstore,当memstore满64MB以后,会flush到disk上而成为storefile。当storefile数量超过3时,会启动compaction过程将它们合并为一个storefile。这个过程中会删除一些timestamp过期的数据,比如update的数据。而当合并后的storefile大小大于hfile默认最大值时,会触发split动作,将它切分成两个region。

lz进行了持续insert压力测试,并设置了不同的hbase.hregion.max.filesize,根据结果得到如下结论:值越小,平均吞吐量越大,但吞吐量越不稳定;值越大,平均吞吐量越小,吞吐量不稳定的时间相对更小。
  为什么会这样呢?推论如下:
a 当hbase.hregion.max.filesize比较小时,触发split的机率更大,而split的时候会将region offline,因此在split结束的时间前,访问该region的请求将被block住,客户端自我block的时间默认为1s。当大量的region同时发生split时,系统的整体访问服务将大受影响。因此容易出现吞吐量及响应时间的不稳定现象

b 当hbase.hregion.max.filesize比较大时,单个region中触发split的机率较小,大量region同时触发split的机率也较小,因此吞吐量较之小hfile尺寸更加稳定些。但是由于长期得不到split,因此同一个region内发生多次compaction的机会增加了。compaction的原理是将原有数据读一遍并重写一遍到hdfs上,然后再删除原有数据。无疑这种行为会降低以io为瓶颈的系统的速度,因此平均吞吐量会受到一些影响而下降。

综合以上两种情况,hbase.hregion.max.filesize不宜过大或过小,256MB或许是一个更理想的经验参数。对于离线型的应用,调整为128MB会更加合适一些,而在线应用除非对split机制进行改造,否则不应该低于256MB

autoflush=false的影响

无论是官方还是很多blog都提倡为了提高hbase的写入速度而在应用代码中设置autoflush=false,然后lz认为在在线应用中应该谨慎进行该设置。原因如下:
  a autoflush=false的原理是当客户端提交delete或put请求时,将该请求在客户端缓存,直到数据超过2M(hbase.client.write.buffer决定)或用户执行了hbase.flushcommits()时才向regionserver提交请求。因此即使htable.put()执行返回成功,也并非说明请求真的成功了。假如还没有达到该缓存而client崩溃,该部分数据将由于未发送到regionserver而丢失。这对于零容忍的在线服务是不可接受的。
  b autoflush=true虽然会让写入速度下降2-3倍,但是对于很多在线应用来说这都是必须打开的,也正是hbase为什么让它默认值为true的原因。当该值为true时,每次请求都会发往regionserver,而regionserver接收到请求后第一件事就是写hlog,因此对io的要求是非常高的,为了提高hbase的写入速度,应该尽可能高地提高io吞吐量,比如增加磁盘、使用raid卡、减少replication因子数等

从性能的角度谈table中family和qualifier的设置

对于传统关系型数据库中的一张table,在业务转换到hbase上建模时,从性能的角度应该如何设置family和qualifier呢?
最极端的,①每一列都设置成一个family,②一个表仅有一个family,所有列都是其中的一个qualifier,那么有什么区别呢?
  从读的方面考虑:
family越多,那么获取每一个cell数据的优势越明显,因为io和网络都减少了。
  如果只有一个family,那么每一次读都会读取当前rowkey的所有数据,网络和io上会有一些损失。
  当然如果要获取的是固定的几列数据,那么把这几列写到一个family中比分别设置family要更好,因为只需一次请求就能拿回所有数据。
  从写的角度考虑:
  首先,内存方面来说,对于一个Region,会为每一个表的每一个Family分配一个Store,而每一个Store,都会分配一个MemStore,所以更多的family会消耗更多的内存。
其次,从flush和compaction方面说,目前版本的hbase,在flush和compaction都是以region为单位的,也就是说当一个family达到flush条件时,该region的所有family所属的memstore都会flush一次,即使memstore中只有很少的数据也会触发flush而生成小文件。这样就增加了compaction发生的机率,而compaction也是以region为单位的,这样就很容易发生compaction风暴从而降低系统的整体吞吐量。
第三,从split方面考虑,由于hfile是以family为单位的,因此对于多个family来说,数据被分散到了更多的hfile中,减小了split发生的机率。这是把双刃剑。更少的split会导致该region的体积比较大,由于balance是以region的数目而不是大小为单位来进行的,因此可能会导致balance失效。而从好的方面来说,更少的split会让系统提供更加稳定的在线服务。而坏处我们可以通过在请求的低谷时间进行人工的split和balance来避免掉。
因此对于写比较多的系统,如果是离线应该,我们尽量只用一个family好了,但如果是在线应用,那还是应该根据应用的情况合理地分配family。

hbase.regionserver.handler.count

RegionServer端开启的RPC监听器实例个数,也即RegionServer能够处理的IO请求线程数。默认是10.
此参数与内存息息相关。该值设置的时候,以监控内存为主要参考。
对于 单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景,可以设置的相对较小。
对于 单次请求内存消耗低,TPS(TransactionPerSecond,每秒事务处理量)要求非常高的场景,可以设置的相对大些。