解题思路
- 暴力法搜索为 O(N^3) 时间复杂度,可通过双指针动态消去无效解来优化效率。
- 双指针法铺垫: 先将给定 nums 排序,复杂度为 O(NlogN)
- 双指针法思路: 固定 3 个指针中最左(最小)数字的指针 k,双指针 i,j 分设在数组索引 (k, len(nums)) 两端,通过双指针交替向中间移动,记录对于每个固定指针 k 的所有满足 nums[k] + nums[i] + nums[j] == 0 的 i,j 组合:
- 当 nums[k] > 0 时直接break跳出:因为 nums[j] >= nums[i] >= nums[k] > 0,即 3 个数字都大于 00 ,在此固定指针 k 之后不可能再找到结果了。
- 当 k > 0 且 nums[k] == nums[k - 1]时即跳过此元素nums[k]:因为已经将 nums[k - 1] 的所有组合加入到结果中,本次双指针搜索只会得到重复组合。
- i,j 分设在数组索引 (k, len(nums)) 两端,当i < j时循环计算s = nums[k] + nums[i] + nums[j],并按照以下规则执行双指针移动:
- 当s < 0时,i += 1并跳过所有重复的nums[i];
- 当s > 0时,j -= 1并跳过所有重复的nums[j];
- 当s == 0时,记录组合[k, i, j]至res,执行i += 1和j -= 1并跳过所有重复的nums[i]和nums[j],防止记录到重复组合
图解
复杂度分析
时间复杂度 O(N^2):其中固定指针k循环复杂度 O(N),双指针 i,j 复杂度 O(N)。
空间复杂度 O(1):指针使用常数大小的额外空间。
代码
// JAVAclass Solution {public List<List<Integer>> threeSum(int[] nums) {Arrays.sort(nums);List<List<Integer>> res = new ArrayList<>();for(int i = 0; i < nums.length - 2; i++){// nums[k]为非负数,就不能满足a+b+c=0了if(nums[i] > 0) break;// 跳过计算过的数据,同时防止结果重复if(i > 0 && nums[i] == nums[i - 1]) {continue;}int leftPoint = i + 1, rightPoint = nums.length - 1;while(leftPoint < rightPoint){int sum = nums[i] + nums[leftPoint] + nums[rightPoint];if(sum < 0){leftPoint++;} else if (sum > 0) {rightPoint--;} else {res.add(Arrays.asList(nums[i], nums[leftPoint], nums[rightPoint]));while (leftPoint < rightPoint && nums[leftPoint] == nums[leftPoint+1]) {leftPoint++;}while(leftPoint < rightPoint && nums[rightPoint] == nums[rightPoint-1]) {rightPoint--;}leftPoint++;rightPoint--;}}}return res;}}
# pythonclass Solution:def threeSum(self, nums: List[int]) -> List[List[int]]:res = []nums.sort()length = len(nums)if (not nums or length<3):return []for i in range(length):if nums[i] > 0:breakif i > 0 and nums[i] == nums[i-1]:continueleftPoint, rightPoint = i + 1, length - 1while leftPoint < rightPoint:total = nums[i] + nums[leftPoint] + nums[rightPoint]if total < 0:leftPoint += 1elif total > 0:rightPoint -= 1else:res.append([nums[i], nums[leftPoint], nums[rightPoint]])while leftPoint < rightPoint and nums[leftPoint] == nums[leftPoint+1]:leftPoint += 1while leftPoint < rightPoint and nums[rightPoint] == nums[rightPoint-1]:rightPoint -= 1leftPoint += 1rightPoint -= 1return res
// C++class Solution {public:vector<vector<int>> threeSum(vector<int>& nums) {vector<vector<int>> res;vector<int > vtemp;sort(nums.begin(), nums.end()); // sortfor (int i = 0; i < nums.size(); i++) {if (nums[i] > 0) {break;}if (i > 0 && nums[i] == nums[i-1]) {continue;}int leftPoint = i + 1;int rightPoint = nums.size() - 1;while (leftPoint < rightPoint) {int sum = nums[leftPoint] + nums[rightPoint] + nums[i];if (sum < 0) {leftPoint++;} else if(sum > 0) {rightPoint--;} else{vector<int > vtemp{nums[i], nums[leftPoint], nums[rightPoint]};res.push_back(vtemp);vtemp.clear();while (leftPoint < rightPoint && nums[leftPoint] == nums[leftPoint+1]) {leftPoint++;}while (leftPoint < rightPoint && nums[rightPoint] == nums[rightPoint-1]) {rightPoint--;}leftPoint++;rightPoint--;}}}return res;}};

