一、排序算法系列目录说明

  • 冒泡排序(Bubble Sort)
  • 插入排序(Insertion Sort)
  • 希尔排序(Shell Sort)
  • 选择排序(Selection Sort)
  • 快速排序(Quick Sort)
  • 归并排序(Merge Sort)
  • 堆排序(Heap Sort)
  • 计数排序(Counting Sort)
  • 桶排序(Bucket Sort)
  • 基数排序(Radix Sort)

二、选择排序(Selection Sort)

选择排序(Selection sort)是一种简单直观的排序算法。

1. 基本思想

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的思想其实和冒泡排序有点类似,都是在一次排序后把最小的元素放到最前面,或者将最大值放在最后面。但是过程不同,冒泡排序是通过相邻的比较和交换。而选择排序是通过对整体的选择,每一趟从前往后查找出无序区最小值,将最小值交换至无序区最前面的位置。

2. 实现逻辑

① 第一轮从下标为 1 到下标为 n-1 的元素中选取最小值,若小于第一个数,则交换② 第二轮从下标为 2 到下标为 n-1 的元素中选取最小值,若小于第二个数,则交换③ 依次类推下去……

3. 动图演示

排序算法之选择排序 - 图1
选择排序
红色表示当前最小值,黄色表示已排序序列,绿色表示当前位置。
具体的我们以一组无序数列{20,40,30,10,60,50}为例分解说明,如下图所示:
排序算法之选择排序 - 图2
4. 复杂度分析 平均时间复杂度:O(N^2)最佳时间复杂度:O(N^2)最差时间复杂度:O(N^2)空间复杂度:O(1)排序方式:In-place稳定性:不稳定 选择排序的交换操作介于和(n-1)次之间。选择排序的比较操作为n(n-1)/2次之间。选择排序的赋值操作介于0和3(n-1)次之间。
比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N = (n-1) + (n-2) +…+ 1 = n x (n-1)/2。交换次数O(n),最好情况是,已经有序,交换0次;最坏情况是,逆序,交换n-1次。

5. 代码实现

C版本:

  1. // 选择排序(C)
  2. void selection_sort(int arr[], int len) {
  3. int i, j, min, temp;
  4. for (i = 0; i < len - 1; i++) {
  5. min = i;
  6. for (j = i + 1; j < len; j++)
  7. if (arr[min] > arr[j])
  8. min = j;
  9. temp = arr[min];
  10. arr[min] = arr[i];
  11. arr[i] = temp;
  12. }
  13. }

C++版本:

  1. // 选择排序(C++)
  2. template<typename T>
  3. void selection_sort(T arr[], int len) {
  4. int i, j, min;
  5. for (i = 0; i < len - 1; i++) {
  6. min = i;
  7. for (j = i + 1; j < len; j++)
  8. if (arr[min] > arr[j])
  9. min = j;
  10. swap(arr[i], arr[min]);
  11. }
  12. }

Java版本:

  1. // 选择排序(Java)
  2. public static void selection_sort(int[] arr) {
  3. int i, j, min, temp, len = arr.length;
  4. for (i = 0; i < len - 1; i++) {
  5. min = i;
  6. for (j = i + 1; j < len; j++)
  7. if (arr[min] > arr[j])
  8. min = j;
  9. temp = arr[min];
  10. arr[min] = arr[i];
  11. arr[i] = temp;
  12. }
  13. }

6. 优化改进

①二元选择排序
改进思路: 简单选择排序,每趟循环只能确定一个元素排序后的定位。根据之前冒泡排序的经验,我们可以考虑改进为每趟循环确定两个元素(当前趟最大和最小记录)的位置,从而减少排序所需的循环次数。改进后对n个数据进行排序,最多只需进行[n/2]趟循环即可。
②堆排序
堆排序是一种树形选择排序,是对直接选择排序的有效改进。具体的分析我们留到后面讲堆排序时再详细说明。


三、总结

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。