image.png

1. HTTP 的基本优化

影响一个 HTTP 网络请求的因素主要有两个:带宽和延迟。

  • 带宽:如果说我们还停留在拨号上网的阶段,带宽可能会成为一个比较严重影响请求的问题,但是现在网络基础建设已经使得带宽得到极大的提升,我们不再会担心由带宽而影响网速,那么就只剩下延迟了。
  • 延迟:
    • 浏览器阻塞(HOL blocking):浏览器会因为一些原因阻塞请求。浏览器对于同一个域名,同时只能有 4 个连接(这个根据浏览器内核不同可能会有所差异),超过浏览器最大连接数限制,后续请求就会被阻塞
    • DNS 查询(DNS Lookup):浏览器需要知道目标服务器的 IP 才能建立连接。将域名解析为 IP 的这个系统就是 DNS。这个通常可以利用 DNS 缓存结果来达到减少这个时间的目的。
    • 建立连接(Initial connection):HTTP 是基于 TCP 协议的,浏览器最快也要在第三次握手时才能捎带 HTTP 请求报文,达到真正的建立连接,但是这些连接无法复用会导致每次请求都经历三次握手和慢启动。三次握手在高延迟的场景下影响较明显,慢启动则对文件类大请求影响较大。

      2. HTTP 1.0 和 HTTP 1.1 的一些区别

  1. 缓存处理,在 HTTP1.0 中主要使用 header 里的 If-Modified-Since,Expires 来做为缓存判断的标准,HTTP1.1 则引入了更多的缓存控制策略例如 Entity tag,If-Unmodified-Since, If-Match, If-None-Match 等更多可供选择的缓存头来控制缓存策略。
  2. 带宽优化及网络连接的使用,HTTP1.0 中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,HTTP1.1 则在请求头引入了 range 头域,它允许只请求资源的某个部分,即返回码是 206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。
  3. 错误通知的管理,在 HTTP1.1 中新增了 24 个错误状态响应码,如 409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。
  4. Host 头处理,在 HTTP1.0 中认为每台服务器都绑定一个唯一的 IP 地址,因此,请求消息中的 URL 并没有传递主机名(hostname)。但随着虚拟主机技术的发展,在一台物理服务器上可以存在多个虚拟主机(Multi-homed Web Servers),并且它们共享一个 IP 地址。HTTP1.1 的请求消息和响应消息都应支持 Host 头域,且请求消息中如果没有 Host 头域会报告一个错误(400 Bad Request)。
  5. 长连接,HTTP 1.1 支持长连接(PersistentConnection)和请求的流水线(Pipelining)处理,在一个 TCP 连接上可以传送多个 HTTP 请求和响应,减少了建立和关闭连接的消耗和延迟,在HTTP1.1 中默认开启 Connection:keep-alive,一定程度上弥补了HTTP1.0 每次请求都要创建连接的缺点。

3. HTTPS 与 HTTP 的一些区别

  • HTTPS 协议需要到 CA 申请证书,一般免费证书很少,需要交费。
  • HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,HTTPS 运行在 SSL/TLS 之上,SSL/TLS 运行在 TCP 之上,所有传输的内容都经过加密的。
  • HTTP 和 HTTPS 使用的是完全不同的连接方式,用的端口也不一样,前者是 80,后者是 443。
  • HTTPS 可以有效的防止运营商劫持,解决了防劫持的一个大问题。

image.png

4. SPDY:HTTP1.x 的优化

2012 年 google 如一声惊雷提出了 SPDY 的方案,优化了 HTTP1.X 的请求延迟,解决了 HTTP1.X 的安全性,具体如下:

  1. 降低延迟,针对 HTTP 高延迟的问题,SPDY 优雅的采取了多路复用(multiplexing)。多路复用通过多个请求 stream 共享一个 tcp 连接的方式,解决了 HOL blocking 的问题,降低了延迟同时提高了带宽的利用率。
  2. 请求优先级(request prioritization)。多路复用带来一个新的问题是,在连接共享的基础之上有可能会导致关键请求被阻塞。SPDY 允许给每个 request 设置优先级,这样重要的请求就会优先得到响应。比如浏览器加载首页,首页的 html 内容应该优先展示,之后才是各种静态资源文件,脚本文件等加载,这样可以保证用户能第一时间看到网页内容。
  3. header 压缩。前面提到 HTTP1.x 的 header 很多时候都是重复多余的。选择合适的压缩算法可以减小包的大小和数量。
  4. 基于 HTTPS 的加密协议传输,大大提高了传输数据的可靠性。
  5. 服务端推送(server push),采用了 SPDY 的网页,例如我的网页有一个 sytle.css 的请求,在客户端收到 sytle.css 数据的同时,服务端会将 sytle.js 的文件推送给客户端,当客户端再次尝试获取 sytle.js 时就可以直接从缓存中获取到,不用再发请求了。SPDY构成图:

image.png
SPDY 位于 HTTP 之下,TCP 和 SSL 之上,这样可以轻松兼容老版本的 HTTP 协议(将 HTTP1.x 的内容封装成一种新的 frame 格式),同时可以使用已有的 SSL 功能。

5. HTTP2.0 性能惊人

HTTP/2: the Future of the Internet
https://http2.akamai.com/demo 是 Akamai 公司建立的一个官方的演示,用以说明 HTTP/2 相比于之前的 HTTP/1.1 在性能上的大幅度提升。 同时请求 379 张图片,从 Load time 的对比可以看出 HTTP/2 在速度上的优势。
image.png
HTTP2.0 可以说是 SPDY 的升级版(其实原本也是基于 SPDY 设计的),但是,HTTP2.0 跟 SPDY 仍有不同的地方,如下:
HTTP2.0 和 SPDY 的区别:

  1. HTTP 2.0 支持明文 HTTP 传输,而 SPDY 强制使用 HTTPS
  2. HTTP 2.0 消息头的压缩算法采用 HPACK http://http2.github.io/http2-spec/compression.html,而非 SPDY 采用的 DEFLATE http://zh.wikipedia.org/wiki/DEFLATE

HTTP 2.0 和 HTTP1.X 相比的新特性

  • 新的二进制格式(Binary Format),HTTP1.x 的解析是基于文本。基于文本协议的格式解析存在天然缺陷,文本的表现形式有多样性,要做到健壮性考虑的场景必然很多,二进制则不同,只认0和1的组合。基于这种考虑HTTP2.0的协议解析决定采用二进制格式,实现方便且健壮。
  • 多路复用(MultiPlexing),即连接共享,即每一个 request 都是是用作连接共享机制的。一个 request 对应一个id,这样一个连接上可以有多个 request,每个连接的 request 可以随机的混杂在一起,接收方可以根据 request 的 id 将 request 再归属到各自不同的服务端请求里面。
  • header 压缩,如上文中所言,对前面提到过 HTTP1.x 的 header带有大量信息,而且每次都要重复发送,HTTP2.0 使用 encoder 来减少需要传输的header大小,通讯双方各自 cache 一份 header fields 表,既避免了重复 header 的传输,又减小了需要传输的大小。
  • 服务端推送(server push),同SPDY一样,HTTP2.0 也具有 server push 功能。

HTTP 2.0 的升级改造

  • 前文说了 HTTP2.0 其实可以支持非 HTTPS 的,但是现在主流的浏览器像 chrome,firefox 表示还是只支持基于 TLS 部署的 HTTP2.0 协议,所以要想升级成 HTTP2.0 还是先升级 HTTPS 为好。
  • 当你的网站已经升级 HTTPS 之后,那么升级 HTTP2.0 就简单很多,如果你使用 NGINX,只要在配置文件中启动相应的协议就可以了,可以参考 NGINX 白皮书,NGINX 配置 HTTP2.0 官方指南 链接
  • 使用了 HTTP2.0 那么,原本的 HTTP1.x 怎么办,这个问题其实不用担心,HTTP2.0 完全兼容 HTTP1.x 的语义,对于不支持 HTTP2.0 的浏览器,NGINX 会自动向下兼容的。

原文:链接