主要基于jdk8
1. LinkedList
LinkedList 经典的双链表结构,适用于乱序插入,删除。指定序列操作则性能不如 ArrayList,这也是其数据结构决定的(即插入删除快,查找更新慢)。
add(E) / addLast(E)
add(index, E)
这边有个小的优化,他会先判断index是靠近队头还是队尾,来确定从哪个方向遍历链入。
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
靠队尾
get(index)
也是会先判断index,不过性能依然不好,这也是为什么不推荐用for(int i = 0; i < lengh; i++)的方式遍历linkedlist,而是使用iterator的方式遍历。
remove(E)
2. ArrayList
ArrayList底层就是一个数组,因此按序查找快,乱序插入,删除因为涉及到后面元素移位所以性能慢。
add(index, E)
注意:这个地方此图不准确,应该是复制,而不是移动。
扩容
一般默认容量是10,扩容后,会length1.5。
*remove(E)
循环遍历数组,判断E是否equals当前元素,删除性能不如LinkedList。
3. Stack
Stack是经典的数据结构,底层也是数组,继承自Vector,先进后出FILO,默认new Stack()容量为10,超出自动扩容。
push(E)
pop()
4. 后缀表达式
Stack的一个典型应用就是计算表达式如 9 + (3 - 1) 3 + 10 / 2,计算机将中缀表达式转为后缀表达式,再对后缀表达式进行计算。
*中缀转后缀
- 数字直接输出
- 栈为空时,遇到运算符,直接入栈
- 遇到左括号, 将其入栈
- 遇到右括号, 执行出栈操作,并将出栈的元素输出,直到弹出栈的是左括号,左括号不输出。
- 遇到运算符(加减乘除):弹出所有优先级大于或者等于该运算符的栈顶元素,然后将该运算符入栈
- 最终将栈中的元素依次出栈,输出。
计算后缀表达
- 遇到数字时,将数字压入堆栈
- 遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算, 并将结果入栈
- 重复上述过程直到表达式最右端
- 运算得出的值即为表达式的结果
5. 队列
与Stack的区别在于:Stack的删除与添加都在队尾进行,而Queue删除在队头,添加在队尾。
ArrayBlockingQueue
生产消费者中常用的阻塞有界队列,FIFO。
put(E)
put(E) 队列满了
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
take()
当元素被取出后,并没有对数组后面的元素位移,而是更新takeIndex来指向下一个元素。
takeIndex是一个环形的增长,当移动到队列尾部时,会指向0,再次循环。
1 private E dequeue() {
2 // assert lock.getHoldCount() == 1;
3 // assert items[takeIndex] != null;
4 final Object[] items = this.items;
5 @SuppressWarnings("unchecked")
6 E x = (E) items[takeIndex];
7 items[takeIndex] = null;
8 if (++takeIndex == items.length)
9 takeIndex = 0;
10 count--;
11 if (itrs != null)
12 itrs.elementDequeued();
13 notFull.signal();
14 return x;
15 }
ArrayBlockingQueue queue = new ArrayBlockingQueue(10);
queue.add(1);
queue.add(2);
System.out.println(queue.take());
queue.put(3);
System.out.println(queue.take());
输出为:1 2
6. HashMap
最常用的哈希表,面试的童鞋必备知识了,内部通过数组 + 单链表的方式实现。dk8中引入了红黑树对长度 > 8的链表进行优化,我们另外篇幅再讲。
put(K, V)
put(K, V) 相同hash值
resize 动态扩容
当map中元素超出设定的阈值后,会进行resize (length * 2)操作,扩容过程中对元素一通操作,并放置到新的位置。
具体操作如下:
- 在jdk7中对所有元素直接rehash, 并放到新的位置.
- 在jdk8中判断元素原hash值新增的bit位是0还是1, 0则索引不变, 1则索引变成”原索引 + oldTable.length”.
1 //定义两条链
2 //原来的hash值新增的bit为0的链,头部和尾部
3 Node<K,V> loHead = null, loTail = null;
4 //原来的hash值新增的bit为1的链,头部和尾部
5 Node<K,V> hiHead = null, hiTail = null;
6 Node<K,V> next;
7 //循环遍历出链条链
8 do {
9 next = e.next;
10 if ((e.hash & oldCap) == 0) {
11 if (loTail == null)
12 loHead = e;
13 else
14 loTail.next = e;
15 loTail = e;
16 }
17 else {
18 if (hiTail == null)
19 hiHead = e;
20 else
21 hiTail.next = e;
22 hiTail = e;
23 }
24 } while ((e = next) != null);
25 //扩容前后位置不变的链
26 if (loTail != null) {
27 loTail.next = null;
28 newTab[j] = loHead;
29 }
30 //扩容后位置加上原数组长度的链
31 if (hiTail != null) {
32 hiTail.next = null;
33 newTab[j + oldCap] = hiHead;
34 }
7. LinkedHashMap
继承自HashMap,底层额外维护了一个双向链表来维持数据有序。可以通过设置accessOrder来实现FIFO(插入有序)或者LRU(访问有序)缓存。
put(K, V)
get(K)
accessOrder为false的时候,直接返回元素就行了,不需要调整位置。
accessOrder为true的时候,需要将最近访问的元素,放置到队尾。
removeEldestEntry 删除最老的元素