程序内存的分配

一个由C/C++编译的程序占用的内存分为以下几个部分:

  • 栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
  • 堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。
  • 全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后有系统释放
  • 文字常量区—常量字符串就是放在这里的。程序结束后由系统释放
  • 程序代码区—存放函数体的二进制代码。

    例子程序

    1. //main.cpp
    2. int a = 0; //全局初始化区
    3. int a = 0; //全局初始化区
    4. char *p1; //全局未初始化区
    5. main() {
    6. int b; //栈
    7. char s[] = "abc"; //栈
    8. char *p2; //栈
    9. char *p3 = "123456"; //123456\0在常量区,p3在栈上。
    10. static int c = 0; //全局(静态)初始化区
    11. p1 = (char *)malloc(10);
    12. p2 = (char *)malloc(20);
    13. //分配得来得10和20字节的区域就在堆区。
    14. strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
    15. }

    堆和栈的理论知识

    1 申请方式

    stack:由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间。
    heap:需要程序员自己申请,并指明大小,在c中malloc函数。
    1. p1 = (char *)malloc(10);
    在C++中用new运算符,如
    1. p2 = (char *)malloc(10);
    但是注意p1、p2本身是在栈中的。

    2 申请后系统的响应

    栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

3 申请大小的限制

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

4 申请效率的比较:

栈由系统自动分配,速度较快。但程序员是无法控制的。

堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

5 堆和栈中的存储内容

栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

6 存取效率的比较

char s1[] = “aaaaaaaaaaaaaaa”;
char s2 = “bbbbbbbbbbbbbbbbb”;
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
*比如:

  1. include
  2. void main() {
  3. char a = 1;
  4. char c[] = "1234567890";
  5. char *p ="1234567890";
  6. a = c[1];
  7. a = p[1];
  8. return;
  9. }

对应的汇编代码:

  1. 10: a = c[1];
  2. 00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
  3. 0040106A 88 4D FC mov byte ptr [ebp-4],cl
  4. 11: a = p[1];
  5. 0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
  6. 00401070 8A 42 01 mov al,byte ptr [edx+1]
  7. 00401073 88 45 FC mov byte ptr [ebp-4],al

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。

7 小结

堆和栈的区别可以用如下的比喻来看出:

使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。关于STM32的堆栈,可以参考此文:详解STM32单片机的堆栈

使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

windows进程中的内存结构

在阅读本文之前,如果你连堆栈是什么多不知道的话,请先阅读文章后面的基础知识。

接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。关于C语言的内存,可以参考此文:C语言中的内存管理

首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码:

  1. include <stdio.h>
  2. int g1=0, g2=0, g3=0;
  3. int main()
  4. {
  5. static int s1=0, s2=0, s3=0;
  6. int v1=0, v2=0, v3=0;
  7. //打印出各个变量的内存地址
  8. printf("0x%08x\n",&v1); //打印各本地变量的内存地址
  9. printf("0x%08x\n",&v2);
  10. printf("0x%08x\n\n",&v3);
  11. printf("0x%08x\n",&g1); //打印各全局变量的内存地址
  12. printf("0x%08x\n",&g2);
  13. printf("0x%08x\n\n",&g3);
  14. printf("0x%08x\n",&s1); //打印各静态变量的内存地址
  15. printf("0x%08x\n",&s2);
  16. printf("0x%08x\n\n",&s3);
  17. return 0;
  18. }

编译后的执行结果是:

  1. 0x0012ff78
  2. 0x0012ff7c
  3. 0x0012ff80
  4. 0x004068d0
  5. 0x004068d4
  6. 0x004068d8
  7. 0x004068dc
  8. 0x004068e0
  9. 0x004068e4

输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。

对于一个进程的内存空间而言,可以在逻辑上分成3个部份:

  • 代码区
  • 静态数据区
  • 动态数据区

动态数据区一般就是“堆栈”。“栈(stack)”和“堆(heap)”是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的“栈”,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。

一个堆栈可以通过“基地址”和“栈顶”地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。

  1. ├———————┤低端内存区域
  2. ……
  3. ├———————┤
  4. 动态数据区
  5. ├———————┤
  6. ……
  7. ├———————┤
  8. 代码区
  9. ├———————┤
  10. 静态数据区
  11. ├———————┤
  12. ……
  13. ├———————┤高端内存区域

堆栈是一个先进后出的数据结构,栈顶地址总是小于等于栈的基地址。我们可以先了解一下函数调用的过程,以便对堆栈在程序中的作用有更深入的了解。不同的语言有不同的函数调用规定,这些因素有参数的压入规则和堆栈的平衡。windows API的调用规则和ANSI C的函数调用规则是不一样的,前者由被调函数调整堆栈,后者由调用者调整堆栈。两者通过“stdcall”和“cdecl”前缀区分。
先看下面这段代码:

  1. include <stdio.h>
  2. void __stdcall func(int param1,int param2,int param3)
  3. {
  4. int var1=param1;
  5. int var2=param2;
  6. int var3=param3;
  7. printf("0x%08x\n",param1); //打印出各个变量的内存地址
  8. printf("0x%08x\n",param2);
  9. printf("0x%08x\n\n",param3);
  10. printf("0x%08x\n",&var1);
  11. printf("0x%08x\n",&var2);
  12. printf("0x%08x\n\n",&var3);
  13. return;
  14. }
  15. int main() {
  16. func(1,2,3);
  17. return 0;
  18. }

编译后的执行结果是:

  1. 0x0012ff78
  2. 0x0012ff7c
  3. 0x0012ff80
  4. 0x0012ff68
  5. 0x0012ff6c
  6. 0x0012ff70
  1. ├———————┤<—函数执行时的栈顶(ESP)、低端内存区域
  2. ……
  3. ├———————┤
  4. var 1
  5. ├———————┤
  6. var 2
  7. ├———————┤
  8. var 3
  9. ├———————┤
  10. RET
  11. ├———————┤<—“__cdecl”函数返回后的栈顶(ESP
  12. parameter 1
  13. ├———————┤
  14. parameter 2
  15. ├———————┤
  16. parameter 3
  17. ├———————┤<—“__stdcall”函数返回后的栈顶(ESP
  18. ……
  19. ├———————┤<—栈底(基地址 EBP)、高端内存区域

上图就是函数调用过程中堆栈的样子了。
首先,三个参数以从右到左的次序压入堆栈,先压“param3”,再压“param2”,最后压入“param1”;然后压入函数的返回地址(RET),接着跳转到函数地址接着执行(这里要补充一点,介绍UNIX下的缓冲溢出原理的文章中都提到在压入RET后,继续压入当前EBP,然后用当前ESP代替EBP。然而,有一篇介绍windows下函数调用的文章中说,在windows下的函数调用也有这一步骤,但根据我的实际调试,并未发现这一步,这还可以从param3和var1之间只有4字节的间隙这点看出来);第三步,将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是减去12字节(ESP=ESP-34,每个int变量占用4个字节);接着就初始化本地变量的内存空间。由于“__stdcall”调用由被调函数调整堆栈,所以在函数返回前要恢复堆栈,先回收本地变量占用的内存(ESP=ESP+34),然后取出返回地址,填入EIP寄存器,回收先前压入参数占用的内存(ESP=ESP+34),继续执行调用者的代码。
*参见下列汇编代码:

  1. ;--------------func 函数的汇编代码-------------------
  2. :00401000 83EC0C sub esp, 0000000C //创建本地变量的内存空间
  3. :00401003 8B442410 mov eax, dword ptr [esp+10]
  4. :00401007 8B4C2414 mov ecx, dword ptr [esp+14]
  5. :0040100B 8B542418 mov edx, dword ptr [esp+18]
  6. :0040100F 89442400 mov dword ptr [esp], eax
  7. :00401013 8D442410 lea eax, dword ptr [esp+10]
  8. :00401017 894C2404 mov dword ptr [esp+04], ecx
  9. ……………………(省略若干代码)
  10. :00401075 83C43C add esp, 0000003C ;恢复堆栈,回收本地变量的内存空间
  11. :00401078 C3 ret 000C ;函数返回,恢复参数占用的内存空间
  12. ;如果是“__cdecl”的话,这里是“ret”,堆栈将由调用者恢复
  13. ;-------------------函数结束-------------------------
  14. ;--------------主程序调用func函数的代码--------------
  15. :00401080 6A03 push 00000003 //压入参数param3
  16. :00401082 6A02 push 00000002 //压入参数param2
  17. :00401084 6A01 push 00000001 //压入参数param1
  18. :00401086 E875FFFFFF call 00401000 //调用func函数
  19. ;如果是“__cdecl”的话,将在这里恢复堆栈,“add esp, 0000000C

聪明的读者看到这里,差不多就明白缓冲溢出的原理了。先来看下面的代码:

  1. include <stdio.h>
  2. include <string.h>
  3. void __stdcall func() {
  4. char lpBuff[8]="\0";
  5. strcat(lpBuff,"AAAAAAAAAAA");
  6. return;
  7. }
  8. int main() {
  9. func();
  10. return 0;
  11. }

编译后执行一下回怎么样?

“0x00414141”指令引用的”0x00000000”内存。该内存不能为”read”,“非法操作”喽!”41”就是”A”的16进制的ASCII码了,那明显就是strcat这句出的问题了。

“pBuff”的大小只有8字节,算进结尾的\0,那strcat最多只能写入7个”A”,但程序实际写入了11个”A”外加1个\0。再来看看上面那幅图,多出来的4个字节正好覆盖了RET的所在的内存空间,导致函数返回到一个错误的内存地址,执行了错误的指令。如果能精心构造这个字符串,使它分成三部分,前一部份仅仅是填充的无意义数据以达到溢出的目的,接着是一个覆盖RET的数据,紧接着是一段shellcode,那只要这个RET地址能指向这段shellcode的第一个指令,那函数返回时就能执行shellcode了。

但是软件的不同版本和不同的运行环境都可能影响这段shellcode在内存中的位置,那么要构造这个RET是十分困难的。一般都在RET和shellcode之间填充大量的NOP指令,使得exploit有更强的通用性。

  1. ├———————┤<—低端内存区域
  2. ……
  3. ├———————┤<—由exploit填入数据的开始
  4. buffer │<—填入无用的数据
  5. ├———————┤
  6. RET │<—指向shellcode,或NOP指令的范围
  7. ├———————┤
  8. NOP
  9. …… │<—填入的NOP指令,是RET可指向的范围
  10. NOP
  11. ├———————┤
  12. shellcode
  13. ├———————┤<—由exploit填入数据的结束
  14. ……
  15. ├———————┤<—高端内存区域

windows下的动态数据除了可存放在栈中,还可以存放在堆中。了解C++的朋友都知道,C++可以使用new关键字来动态分配内存。来看下面的C++代码:

  1. include <stdio.h>
  2. include <iostream.h>
  3. include <windows.h>
  4. void func()
  5. {
  6. char *buffer=new char[128];
  7. char bufflocal[128];
  8. static char buffstatic[128];
  9. printf("0x%08x\n",buffer); //打印堆中变量的内存地址
  10. printf("0x%08x\n",bufflocal); //打印本地变量的内存地址
  11. printf("0x%08x\n",buffstatic); //打印静态变量的内存地址
  12. }
  13. void main() {
  14. func();
  15. return;
  16. }

程序执行结果为:

  1. 0x004107d0
  2. 0x0012ff04
  3. 0x004068c0

可以发现用new关键字分配的内存即不在栈中,也不在静态数据区。VC编译器是通过windows下的“堆(heap)”来实现new关键字的内存动态分配。在讲“堆”之前,先来了解一下和“堆”有关的几个API函数:

  1. - HeapAlloc 在堆中申请内存空间
  2. - HeapCreate 创建一个新的堆对象
  3. - HeapDestroy 销毁一个堆对象
  4. - HeapFree 释放申请的内存
  5. - HeapWalk 枚举堆对象的所有内存块
  6. - GetProcessHeap 取得进程的默认堆对象
  7. - GetProcessHeaps 取得进程所有的堆对象
  8. - LocalAlloc
  9. - GlobalAlloc

当进程初始化时,系统会自动为进程创建一个默认堆,这个堆默认所占内存的大小为1M。堆对象由系统进行管理,它在内存中以链式结构存在。通过下面的代码可以通过堆动态申请内存空间:

  1. HANDLE hHeap=GetProcessHeap();
  2. char *buff=HeapAlloc(hHeap,0,8);

其中hHeap是堆对象的句柄,buff是指向申请的内存空间的地址。那这个hHeap究竟是什么呢?它的值有什么意义吗?看看下面这段代码吧:

  1. #pragma comment(linker,"/entry:main") //定义程序的入口
  2. include <windows.h>
  3. _CRTIMP int (__cdecl *printf)(const char *, ...); //定义STL函数printf
  4. /*---------------------------------------------------------------------------
  5. 写到这里,我们顺便来复习一下前面所讲的知识:
  6. (*注)printf函数是C语言的标准函数库中函数,VC的标准函数库由msvcrt.dll模块实现。
  7. 由函数定义可见,printf的参数个数是可变的,函数内部无法预先知道调用者压入的参数个数,
  8. 函数只能通过分析第一个参数字符串的格式来获得压入参数的信息,由于这里参数的个数是动态的,
  9. 所以必须由调用者来平衡堆栈,这里便使用了__cdecl调用规则。BTW,Windows系统的API函数基本上是__stdcall调用形式,
  10. 只有一个API例外,那就是wsprintf,它使用__cdecl调用规则,同printf函数一样,这是由于它的参数个数是可变的缘故。
  11. ---------------------------------------------------------------------------*/
  12. void main()
  13. {
  14. HANDLE hHeap=GetProcessHeap();
  15. char *buff=HeapAlloc(hHeap,0,0x10);
  16. char *buff2=HeapAlloc(hHeap,0,0x10);
  17. HMODULE hMsvcrt=LoadLibrary("msvcrt.dll");
  18. printf=(void *)GetProcAddress(hMsvcrt,"printf");
  19. printf("0x%08x\n",hHeap);
  20. printf("0x%08x\n",buff);
  21. printf("0x%08x\n\n",buff2);
  22. }

执行结果为:

  1. 0x00130000
  2. 0x00133100
  3. 0x00133118

hHeap的值怎么和那个buff的值那么接近呢?

其实hHeap这个句柄就是指向HEAP首部的地址。在进程的用户区存着一个叫PEB(进程环境块)的结构,这个结构中存放着一些有关进程的重要信息,其中在PEB首地址偏移0x18处存放的ProcessHeap就是进程默认堆的地址,而偏移0x90处存放了指向进程所有堆的地址列表的指针。

windows有很多API都使用进程的默认堆来存放动态数据,如windows 2000下的所有ANSI版本的函数都是在默认堆中申请内存来转换ANSI字符串到Unicode字符串的。对一个堆的访问是顺序进行的,同一时刻只能有一个线程访问堆中的数据,当多个线程同时有访问要求时,只能排队等待,这样便造成程序执行效率下降。
最后来说说内存中的数据对齐。

所位数据对齐,是指数据所在的内存地址必须是该数据长度的整数倍,DWORD数据的内存起始地址能被4除尽,WORD数据的内存起始地址能被2除尽,x86 CPU能直接访问对齐的数据,当他试图访问一个未对齐的数据时,会在内部进行一系列的调整,这些调整对于程序来说是透明的,但是会降低运行速度,所以编译器在编译程序时会尽量保证数据对齐。同样一段代码,我们来看看用VC、Dev-C++和lcc三个不同编译器编译出来的程序的执行结果:

  1. include <stdio.h>
  2. int main()
  3. {
  4. int a;
  5. char b;
  6. int c;
  7. printf("0x%08x\n",&a);
  8. printf("0x%08x\n",&b);
  9. printf("0x%08x\n",&c);
  10. return 0;
  11. }

这是用VC编译后的执行结果:

  1. 0x0012ff7c
  2. 0x0012ff7b
  3. 0x0012ff80

变量在内存中的顺序:b(1字节)-a(4字节)-c(4字节)。
这是用Dev-C++编译后的执行结果:

  1. 0x0022ff7c
  2. 0x0022ff7b
  3. 0x0022ff74

变量在内存中的顺序:c(4字节)-中间相隔3字节-b(占1字节)-a(4字节)。
这是用lcc编译后的执行结果:

  1. 0x0012ff6c
  2. 0x0012ff6b
  3. 0x0012ff64

变量在内存中的顺序:同上。

三个编译器都做到了数据对齐,但是后两个编译器显然没VC“聪明”,让一个char占了4字节,浪费内存哦。

基础知识:

堆栈是一种简单的数据结构,是一种只允许在其一端进行插入或删除的线性表。允许插入或删除操作的一端称为栈顶,另一端称为栈底,对堆栈的插入和删除操作被称为入栈和出栈。有一组CPU指令可以实现对进程的内存实现堆栈访问。

其中,POP指令实现出栈操作,PUSH指令实现入栈操作。CPU的ESP寄存器存放当前线程的栈顶指针,EBP寄存器中保存当前线程的栈底指针。CPU的EIP寄存器存放下一个CPU指令存放的内存地址,当CPU执行完当前的指令后,从EIP寄存器中读取下一条指令的内存地址,然后继续执行。