分布式事务 Seata TCC 模式深度解析

参考:http://www.360doc.cn/article/45689189_831763933.html

背景:
2019 年 3 月,蚂蚁金服加入分布式事务 Seata 的社区共建中,并贡献其 TCC 模式。本期是 SOFAChannel 第四期,主题:分布式事务 Seata TCC 模式深度解析,本文根据觉生的直播整理。
大家晚上好,我是 Seata Committer 觉生,来自蚂蚁金服数据中间件团队。今天的内容主要分为以下四个部分:
Seata TCC 模式的原理解析;
从 TCC 的业务模型与并发控制分享如何设计一个 TCC 接口,并且适配 TCC 模型;

一、TCC 设计原则

从 TCC 模型的框架可以发现,TCC 模型的核心在于 TCC 接口的设计。用户在接入 TCC 时,大部分工作都集中在如何实现 TCC 服务上。下面我会分享蚂蚁金服内多年的 TCC 应用实践以及在 TCC 设计和实现过程中的注意事项。
设计一套 TCC 接口最重要的是什么?主要有两点,第一点,需要将操作分成两阶段完成。TCC(Try-Confirm-Cancel)分布式事务模型相对于 XA 等传统模型,其特征在于它不依赖 RM 对分布式事务的支持,而是通过对业务逻辑的分解来实现分布式事务。
TCC 模型认为对于业务系统中一个特定的业务逻辑 ,其对外提供服务时,必须接受一些不确定性,即对业务逻辑初步操作的调用仅是一个临时性操作,调用它的主业务服务保留了后续的取消权。如果主业务服务认为全局事务应该回滚,它会要求取消之前的临时性操作,这就对应从业务服务的取消操作。而当主业务服务认为全局事务应该提交时,它会放弃之前临时性操作的取消权,这对应从业务服务的确认操作。每一个初步操作,最终都会被确认或取消。因此,针对一个具体的业务服务,TCC 分布式事务模型需要业务系统提供三段业务逻辑:
1.初步操作 Try:完成所有业务检查,预留必须的业务资源。
2.确认操作 Confirm:真正执行的业务逻辑,不做任何业务检查,只使用 Try 阶段预留的业务资源。因此,只要 Try 操作成功,Confirm 必须能成功。另外,Confirm 操作需满足幂等性,保证一笔分布式事务能且只能成功一次。
3.取消操作 Cancel:释放 Try 阶段预留的业务资源。同样的,Cancel 操作也需要满足幂等性。

二、TCC 异常控制

在有了一套完备的 TCC 接口之后,是不是就真的高枕无忧了呢?答案是否定的。在微服务架构下,很有可能出现网络超时、重发,机器宕机等一系列的异常 Case。一旦遇到这些 Case,就会导致我们的分布式事务执行过程出现异常。根据蚂蚁金服内部多年的使用来看,最常见的主要是这三种异常,分别是空回滚、幂等、悬挂。

2.1 空回滚

定义:
空回滚对于一个分布式事务来说,在没有调用TCC资源Try方法的情况下,调用了二阶段的Cancel,Cancel需要识别出这是一个空回滚,然后直接返回成功。

为什么造成空回滚:
注册分支事务是在调用 RPC 时,Seata 框架的切面会拦截到该次调用请求,先向 TC 注册一个分支事务,然后才去执行 RPC 调用逻辑。如果 RPC 调用逻辑有问题,比如调用方机器宕机、网络异常,都会造成 RPC 调用失败,即未执行 Try 方法。但是分布式事务已经开启了,需要推进到终态,因此,TC 会回调参与者二阶段 Cancel 接口,从而形成空回滚。

解决方案
前面提到只要cancle 识别出空回滚,直接返回成功。那关键就是要是识别出空回滚。
思路是只需要在第一阶段是否执行,如果执行了正常回滚,没有执行,就是空回滚,直接返回即可。
因此需要额外一张事物控制表,表中有分布式事物Xid 和分支事物Id,
第一阶段 try执行成功插入一条数据,表示一阶段执行了。
cancel 里面执行之前,检测该记录是否存在,是否执行回滚。

2.2 幂等

定义:
幂等就是对于同一个分布式事务的同一个分支事务,重复去调用该分支事务的第二阶段接口,因此,要求 TCC 的二阶段 Confirm 和 Cancel 接口保证幂等,不会重复使用或者释放资源。如果幂等控制没有做好,很有可能导致资损等严重问题。
什么样的情形会造成重复提交或回滚?
从图中可以看到,提交或回滚是一次 TC 到参与者的网络调用。因此,网络故障、参与者宕机等都有可能造成参与者 TCC 资源实际执行了二阶段防范,但是 TC 没有收到返回结果的情况,这时,TC 就会重复调用,直至调用成功,整个分布式事务结束。
解决方案:
一个简单的思路就是记录每个分支事务的执行状态。在执行前状态,如果已执行,那就不再执行;否则,正常执行。前面在讲空回滚的时候,已经有一张事务控制表了,事务控制表的每条记录关联一个分支事务,那我们完全可以在这张事务控制表上加一个状态字段,用来记录每个分支事务的执行状态。

2.3 悬挂

定义:
按照惯例,咱们来先讲讲什么是悬挂。悬挂就是对于一个分布式事务,其二阶段 Cancel 接口比 Try 接口先执行。因为允许空回滚的原因,Cancel 接口认为 Try 接口没执行,空回滚直接返回成功,对于 Seata 框架来说,认为分布式事务的二阶段接口已经执行成功,整个分布式事务就结束了。但是这之后 Try 方法才真正开始执行,预留业务资源,前面提到事务并发控制的业务加锁,对于一个 Try 方法预留的业务资源,只有该分布式事务才能使用,然而 Seata 框架认为该分布式事务已经结束,也就是说,当出现这种情况时,该分布式事务第一阶段预留的业务资源就再也没有人能够处理了,对于这种情况,我们就称为悬挂,即业务资源预留后没法继续处理。
什么样的情况会造成悬挂呢?
按照前面所讲,在 RPC 调用时,先注册分支事务,再执行 RPC 调用,如果此时 RPC 调用的网络发生拥堵,通常 RPC 调用是有超时时间的,RPC 超时以后,发起方就会通知 TC 回滚该分布式事务,可能回滚完成后,RPC 请求才到达参与者,真正执行,从而造成悬挂。
解决方案:
根据悬挂出现的条件先来分析下,悬挂是指二阶段 Cancel 执行完后,一阶段才执行。也就是说,为了避免悬挂,如果二阶段执行完成,那一阶段就不能再继续执行。因此,当一阶段执行时,需要先检查二阶段是否已经执行完成,如果已经执行,则一阶段不再执行;否则可以正常执行。那怎么检查二阶段是否已经执行呢?大家是否想到了刚才解决空回滚和幂等时用到的事务控制表,可以在二阶段执行时插入一条事务控制记录,状态为已回滚,这样当一阶段执行时,先读取该记录,如果记录存在,就认为二阶段已经执行;否则二阶段没执行。

2.4 三种异常总结:

首先是 Try 方法(这里可以用于解决悬挂,插入判断空回滚的条件:插入表事物记录)。
结合前面讲到空回滚和悬挂异常,Try 方法主要需要考虑两个问题,一个是 Try 方法需要能够告诉二阶段接口,已经预留业务资源成功。第二个是需要检查第二阶段是否已经执行完成,如果已完成,则不再执行。
先插入事务控制表记录,如果插入成功,说明第二阶段还没有执行,可以继续执行第一阶段。如果插入失败,则说明第二阶段已经执行或正在执行,则抛出异常,终止即可。
最后是 Confirm 方法。(这里可以用于解决幂等处理
因为 Confirm 方法不允许空回滚,也就是说,Confirm 方法一定要在 Try 方法之后执行。因此,Confirm 方法只需要关注重复提交的问题。可以先锁定事务记录,如果事务记录为空,则说明是一个空提交,不允许,终止执行。如果事务记录不为空,则继续检查状态是否为初始化,如果是,则说明一阶段正确执行,那二阶段正常执行即可。如果状态是已提交,则认为是重复提交,直接返回成功即可;如果状态是已回滚,也是一个异常,一个已回滚的事务,不能重新提交,需要能够拦截到这种异常情况,并报警。
最后是 Cancel 方法。(这里可以用于解决 空回滚,插入判断悬挂的条件:回滚执行的事物状态
因为 Cancel 方法允许空回滚,并且要在先执行的情况下,让 Try 方法感知到 Cancel 已经执行,所以和 Confirm 方法略有不同。首先依然是锁定事务记录。如果事务记录为空,则认为 Try 方法还没执行,即是空回滚。空回滚的情况下,应该先插入一条事务记录,确保后续的 Try 方法不会再执行。如果插入成功,则说明 Try 方法还没有执行,空回滚继续执行。如果插入失败,则认为Try 方法正再执行,等待 TC 的重试即可。如果一开始读取事务记录不为空,则说明 Try 方法已经执行完毕,再检查状态是否为初始化,如果是,则还没有执行过其他二阶段方法,正常执行 Cancel 逻辑。如果状态为已回滚,则说明这是重复调用,允许幂等,直接返回成功即可。如果状态为已提交,则同样是一个异常,一个已提交的事务,不能再次回滚

三、TCC 性能提升

3.1 同库模式

第一个优化方案是改为同库模式。同库模式简单来说,就是分支事务记录与业务数据在相同的库中。什么意思呢?之前提到,在注册分支事务记录的时候,框架的调用方切面会先向 TC 注册一个分支事务记录,注册成功后,才会继续往下执行 RPC 调用。TC 在收到分支事务记录注册请求后,会往自己的数据库里插入一条分支事务记录,从而保证事务数据的持久化存储。那同库模式就是调用方切面不再向 TC 注册了,而是直接往业务的数据库里插入一条事务记录。
在讲解同库模式的性能优化点之前,先给大家简单讲讲同库模式的恢复逻辑。一个分布式事务的提交或回滚还是由发起方通知 TC,但是由于分支事务记录保存在业务数据库,而不是 TC 端。因此,TC 不知道有哪些分支事务记录,在收到提交或回滚的通知后,仅仅是记录一下该分布式事务的状态。那分支事务记录怎么真正执行第二阶段呢?需要在各个参与者内部启动一个异步任务,定期捞取业务数据库中未结束的分支事务记录,然后向 TC 检查整个分布式事务的状态,即图中的 StateCheckRequest 请求。TC 在收到这个请求后,会根据之前保存的分布式事务的状态,告诉参与者是提交还是回滚,从而完成分支事务记录。

那这样做有什么好处呢?左边是采用同库模式前的调用关系图,在每次调用一个参与者的时候,都是先向 TC 注册一个分布式事务记录,TC 再持久化存储在自己的数据库中,也就是说,一个分支事务记录的注册,包含一次 RPC 和一次持久化存储。
右边是优化后的调用关系图。从图中可以看出,每次调用一个参与者的时候,都是直接保存在业务的数据库中,从而减少与 TC 之间的 RPC 调用。优化后,有多少个参与者,就节约多少次 RPC 调用。
这就是同库模式的性能方案。把分支事务记录保存在业务数据库中,从而减少与 TC 的 RPC 调用。

3.2 异步化

异步化,这个针对某些场景,才适用。
另外一个性能优化方式就是异步化,什么是异步化。TCC 模型的一个作用就是把两阶段拆分成了两个独立的阶段,通过资源业务锁定的方式进行关联。资源业务锁定方式的好处在于,既不会阻塞其他事务在第一阶段对于相同资源的继续使用,也不会影响本事务第二阶段的正确执行。从理论上来说,只要业务允许,事务的第二阶段什么时候执行都可以,反正资源已经业务锁定,不会有其他事务动用该事务锁定的资源。
假设只有一个中间账户的情况下,每次调用支付服务的 Commit 接口,都会锁定中间账户,中间账户存在热点性能问题。
但是,在担保交易场景中,七天以后才需要将资金从中间账户划拨给商户,中间账户并不需要对外展示。因此,在执行完支付服务的第一阶段后,就可以认为本次交易的支付环节已经完成,并向用户和商户返回支付成功的结果,并不需要马上执行支付服务二阶段的 Commit 接口,等到低锋期时,再慢慢消化,异步地执行。