三种方法任选1个,或者三个全选
##deseq2处理(DEG为标注化后的exp,并且添加了change列,用来质控数据)
rm(list = ls())
load("TCGA-HNSC.Rdata")
table(Group)
#deseq2----
library(DESeq2)
colData <- data.frame(row.names =colnames(exp),
condition=Group)
if(!file.exists(paste0(proj,"_dd.Rdata"))){
dds <- DESeqDataSetFromMatrix(
countData = exp,
colData = colData,
design = ~ condition)
dds <- DESeq(dds)
save(dds,file = paste0(proj,"_dd.Rdata"))
}
load(file = paste0(proj,"_dd.Rdata"))
class(dds)
res <- results(dds, contrast = c("condition",rev(levels(Group))))
c("condition",rev(levels(Group)))
class(res)
DEG1 <- as.data.frame(res)
DEG1 <- DEG1[order(DEG1$pvalue),]
DEG1 = na.omit(DEG1)
head(DEG1)
#添加change列标记基因上调下调
logFC_t = 2
pvalue_t = 0.05
k1 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange < -logFC_t);table(k1)
k2 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange > logFC_t);table(k2)
DEG1$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
table(DEG1$change)
head(DEG1)
edgeR处理
library(edgeR)
dge <- DGEList(counts=exp,group=Group)
dge$samples$lib.size <- colSums(dge$counts)
dge <- calcNormFactors(dge)
design <- model.matrix(~Group)
dge <- estimateGLMCommonDisp(dge, design)
dge <- estimateGLMTrendedDisp(dge, design)
dge <- estimateGLMTagwiseDisp(dge, design)
fit <- glmFit(dge, design)
fit <- glmLRT(fit)
DEG2=topTags(fit, n=Inf)
class(DEG2)
DEG2=as.data.frame(DEG2)
head(DEG2)
k1 = (DEG2$PValue < pvalue_t)&(DEG2$logFC < -logFC_t);table(k1)
k2 = (DEG2$PValue < pvalue_t)&(DEG2$logFC > logFC_t);table(k2)
DEG2$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
head(DEG2)
table(DEG2$change)
limma处理
library(limma)
dge <- DGEList(counts=exp)
dge <- calcNormFactors(dge)
v <- voom(dge,design, normalize="quantile")
design <- model.matrix(~Group)
fit <- lmFit(v, design)
fit= eBayes(fit)
DEG3 = topTable(fit, coef=2, n=Inf)
DEG3 = na.omit(DEG3)
k1 = (DEG3$P.Value < pvalue_t)&(DEG3$logFC < -logFC_t);table(k1)
k2 = (DEG3$P.Value < pvalue_t)&(DEG3$logFC > logFC_t);table(k2)
DEG3$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
table(DEG3$change)
head(DEG3)
组合三种数据并保存
tj = data.frame(deseq2 = as.integer(table(DEG1$change)),
edgeR = as.integer(table(DEG2$change)),
limma_voom = as.integer(table(DEG3$change)),
row.names = c("down","not","up")
);tj
save(DEG1,DEG2,DEG3,Group,tj,file = paste0(proj,"_DEG.Rdata"))