rm(list = ls())
load(file = "step1output.Rdata")
load(file = "step2output.Rdata")
#输入数据:exp和Group
#Principal Component Analysis
#http://www.sthda.com/english/articles/31-principal-component
##-methods-in-r-practical-guide/112-pca-principal-component-a
##nalysis-essentials
# 1.PCA 图----
dat=as.data.frame(t(exp))
library(FactoMineR)
library(factoextra)
dat.pca <- PCA(dat, graph = FALSE)
pca_plot <- fviz_pca_ind(dat.pca,
geom.ind = "point", # show points only (nbut not "text")
col.ind = Group, # color by groups
palette = c("#00AFBB", "#E7B800"),
addEllipses = TRUE, # Concentration ellipses
legend.title = "Groups"
)
pca_plot
2.top 1000 sd 热图——
cg=names(tail(sort(apply(exp,1,sd)),1000))
n=exp[cg,]
# 直接画热图,对比不鲜明
library(pheatmap)
annotation_col=data.frame(group=Group)
rownames(annotation_col)=colnames(n)
pheatmap(n,
show_colnames =F,
show_rownames = F,
annotation_col=annotation_col
)
pheatmap(n,
show_colnames =F,
show_rownames = F,
annotation_col=annotation_col,
scale = "row", ##按行标准化,只关心一个基因在不同样本中的变化
breaks = seq(-3,3,length.out = 100) ##设置颜色分辨范围
)
按行标准化