rm(list = ls())
load(file = 'step4output.Rdata')
library(clusterProfiler)
library(ggthemes)
library(org.Hs.eg.db)
library(dplyr)
library(ggplot2)
library(stringr)
library(enrichplot)
# 1.GO 富集分析----
#(1)输入数据
gene_up = deg$ENTREZID[deg$change == 'up']
gene_down = deg$ENTREZID[deg$change == 'down']
gene_diff = c(gene_up,gene_down)
#(2)富集
#以下步骤耗时很长,设置了存在即跳过
if(!file.exists(paste0(gse_number,"_GO.Rdata"))){
ego <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "ALL",
readable = TRUE)
ego_BP <- enrichGO(gene = gene_diff,
OrgDb= org.Hs.eg.db,
ont = "BP",
readable = TRUE)
#ont参数:One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
save(ego,ego_BP,file = paste0(gse_number,"_GO.Rdata"))
}
load(paste0(gse_number,"_GO.Rdata"))
可视化
#条带图
barplot(ego)
#气泡图
dotplot(ego)
dotplot(ego, split = "ONTOLOGY", font.size = 10,
showCategory = 5) +
facet_grid(ONTOLOGY ~ ., space = "free_y",scales = "free_y") +
scale_y_discrete(labels = function(x) str_wrap(x, width = 45))
#geneList 用于设置下面图的颜色
geneList = deg$logFC
names(geneList)=deg$ENTREZID
#(3)展示top通路的共同基因,要放大看。
#Gene-Concept Network
cnetplot(ego,categorySize="pvalue", foldChange=geneList,colorEdge = TRUE)
cnetplot(ego, showCategory = 3,foldChange=geneList, circular = TRUE, colorEdge = TRUE)
#Enrichment Map,这个函数最近更新过,版本不同代码会不同
Biobase::package.version("enrichplot")
if(T){
emapplot(pairwise_termsim(ego)) #新版本
}else{
emapplot(ego)#旧版本
}
#(4)展示通路关系 https://zhuanlan.zhihu.com/p/99789859
#goplot(ego)
goplot(ego_BP)
#(5)Heatmap-like functional classification
heatplot(ego,foldChange = geneList,showCategory = 8)
KEGG pathway analysis
# 2.KEGG pathway analysis----
#上调、下调、差异、所有基因
#(1)输入数据
gene_up = deg[deg$change == 'up','ENTREZID']
gene_down = deg[deg$change == 'down','ENTREZID']
gene_diff = c(gene_up,gene_down)
#(2)对上调/下调/所有差异基因进行富集分析
if(!file.exists(paste0(gse_number,"_KEGG.Rdata"))){
kk.up <- enrichKEGG(gene = gene_up,
organism = 'hsa')
kk.down <- enrichKEGG(gene = gene_down,
organism = 'hsa')
kk.diff <- enrichKEGG(gene = gene_diff,
organism = 'hsa')
save(kk.diff,kk.down,kk.up,file = paste0(gse_number,"_KEGG.Rdata"))
}
load(paste0(gse_number,"_KEGG.Rdata"))
#(3)看看富集到了吗?https://mp.weixin.qq.com/s/NglawJgVgrMJ0QfD-YRBQg
table(kk.diff@result$p.adjust<0.05)
table(kk.up@result$p.adjust<0.05)
table(kk.down@result$p.adjust<0.05)
#(4)双向图
# 富集分析所有图表默认都是用p.adjust,富集不到可以退而求其次用p值,在文中说明即可
down_kegg <- kk.down@result %>%
filter(pvalue<0.05) %>% #筛选行
mutate(group=-1) #新增列
up_kegg <- kk.up@result %>%
filter(pvalue<0.05) %>%
mutate(group=1)
source("kegg_plot_function.R")
g_kegg <- kegg_plot(up_kegg,down_kegg)
g_kegg
#g_kegg +scale_y_continuous(labels = c(2,0,2,4,6))
ggsave(g_kegg,filename = 'kegg_up_down.png')
# 3.GSEA作kegg和GO富集分析----
#https://www.yuque.com/xiaojiewanglezenmofenshen/dbwkg1/ytawgg
#(1)查看示例数据
data(geneList, package="DOSE")
#(2)将我们的数据转换成示例数据的格式
geneList=deg$logFC
names(geneList)=deg$ENTREZID
geneList=sort(geneList,decreasing = T)
#(3)GSEA富集
kk_gse <- gseKEGG(geneList = geneList,
organism = 'hsa',
verbose = FALSE)
down_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore < 0,];down_kegg$group=-1
up_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group=1
#(4)可视化
g2 = kegg_plot(up_kegg,down_kegg)
g2