TCGA下载数据,并注释
#下载数据
proj = "TCGA-HNSC"
download.file(url = paste0("https://gdc.xenahubs.net/download/",proj, ".htseq_counts.tsv.gz"),destfile = paste0(proj,".htseq_counts.tsv.gz"))
#表达矩阵行名ID转换
dat = read.table(paste0(proj,".htseq_counts.tsv.gz"),check.names = F,row.names = 1,header = T)
##逆转log
dat = as.matrix(2^dat - 1)
dat[1:4,1:4]
### 深坑一个
dat[97,9]
as.character(dat[97,9])
### 用apply转换为整数矩阵
exp = apply(dat, 2, as.integer)
exp[1:4,1:4] #行名消失
rownames(exp) = rownames(dat)
exp[1:4,1:4]
#表达矩阵过滤
nrow(exp)
##常用过滤标准1:
###仅去除在所有样本里表达量都为零的基因
exp1 = exp[rowSums(exp)>0,]
nrow(exp1)
##常用过滤标准2(推荐):
###仅保留在一半以上样本里表达的基因
exp = exp[apply(exp, 1, function(x) sum(x > 0) > 0.5*ncol(exp)), ]
nrow(exp)
#分组信息获取
##根据样本ID的第14-15位,给样本分组(tumor和normal)
library(dplyr)
library(tidyverse)
table(str_sub(colnames(exp),14,15))
###分组
Group = ifelse(as.numeric(str_sub(colnames(exp),14,15)) < 10,'tumor','normal')
Group = factor(Group,levels = c("normal","tumor"))
table(Group)
save(exp,Group,proj,file = paste0(proj,".Rdata"))
标准化数据
rm(list = ls())
load("TCGA-HNSC.Rdata")
table(Group)
#deseq2----
library(DESeq2)
colData <- data.frame(row.names =colnames(exp),
condition=Group)
if(!file.exists(paste0(proj,"_dd.Rdata"))){
dds <- DESeqDataSetFromMatrix(
countData = exp,
colData = colData,
design = ~ condition)
dds <- DESeq(dds)
save(dds,file = paste0(proj,"_dd.Rdata"))
}
load(file = paste0(proj,"_dd.Rdata"))
class(dds)
res <- results(dds, contrast = c("condition",rev(levels(Group))))
c("condition",rev(levels(Group)))
class(res)
DEG1 <- as.data.frame(res)
DEG1 <- DEG1[order(DEG1$pvalue),]
DEG1 = na.omit(DEG1)
head(DEG1)
#添加change列标记基因上调下调
logFC_t = 2
pvalue_t = 0.05
k1 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange < -logFC_t);table(k1)
k2 = (DEG1$pvalue < pvalue_t)&(DEG1$log2FoldChange > logFC_t);table(k2)
DEG1$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
table(DEG1$change)
head(DEG1)
#edgeR----
library(edgeR)
dge <- DGEList(counts=exp,group=Group)
dge$samples$lib.size <- colSums(dge$counts)
dge <- calcNormFactors(dge)
design <- model.matrix(~Group)
dge <- estimateGLMCommonDisp(dge, design)
dge <- estimateGLMTrendedDisp(dge, design)
dge <- estimateGLMTagwiseDisp(dge, design)
fit <- glmFit(dge, design)
fit <- glmLRT(fit)
DEG2=topTags(fit, n=Inf)
class(DEG2)
DEG2=as.data.frame(DEG2)
head(DEG2)
k1 = (DEG2$PValue < pvalue_t)&(DEG2$logFC < -logFC_t);table(k1)
k2 = (DEG2$PValue < pvalue_t)&(DEG2$logFC > logFC_t);table(k2)
DEG2$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
head(DEG2)
table(DEG2$change)
###limma----
library(limma)
dge <- DGEList(counts=exp)
dge <- calcNormFactors(dge)
v <- voom(dge,design, normalize="quantile")
design <- model.matrix(~Group)
fit <- lmFit(v, design)
fit= eBayes(fit)
DEG3 = topTable(fit, coef=2, n=Inf)
DEG3 = na.omit(DEG3)
k1 = (DEG3$P.Value < pvalue_t)&(DEG3$logFC < -logFC_t);table(k1)
k2 = (DEG3$P.Value < pvalue_t)&(DEG3$logFC > logFC_t);table(k2)
DEG3$change = ifelse(k1,"DOWN",ifelse(k2,"UP","NOT"))
table(DEG3$change)
head(DEG3)
tj = data.frame(deseq2 = as.integer(table(DEG1$change)),
edgeR = as.integer(table(DEG2$change)),
limma_voom = as.integer(table(DEG3$change)),
row.names = c("down","not","up")
);tj
save(DEG1,DEG2,DEG3,Group,tj,file = paste0(proj,"_DEG.Rdata"))
PCA图
rm(list = ls())
library(ggplot2)
library(tinyarray)
load("TCGA-HNSC.Rdata")
load("TCGA-HNSC_DEG.Rdata")
exp[1:4,1:4]
ncol(exp)
# cpm 去除文库大小的影响
dat = log2(cpm(exp)+1)
pca.plot = draw_pca(dat,Group);pca.plot
save(pca.plot,file = paste0(proj,"_pcaplot.Rdata"))
TCGA作图,拼图
install.packages('VennDiagram')
library('VennDiagram')
UP=function(df){
rownames(df)[df$change=="UP"]
}
DOWN=function(df){
rownames(df)[df$change=="DOWN"]
}
up = intersect(intersect(UP(DEG1),UP(DEG2)),UP(DEG3))
down = intersect(intersect(DOWN(DEG1),DOWN(DEG2)),DOWN(DEG3))
dat = log2(cpm(exp)+1)
hp = draw_heatmap(dat[c(up,down),],Group,n_cutoff = 2)
#上调、下调基因分别画维恩图
up_genes = list(Deseq2 = UP(DEG1),
edgeR = UP(DEG2),
limma = UP(DEG3))
down_genes = list(Deseq2 = DOWN(DEG1),
edgeR = DOWN(DEG2),
limma = DOWN(DEG3))
up.plot <- draw_venn(up_genes,"UPgene")
down.plot <- draw_venn(down_genes,"DOWNgene")
#维恩图拼图,终于搞定
library(patchwork)
#up.plot + down.plot
# 拼图
pca.plot + hp+up.plot +down.plot+ plot_layout(guides = "collect")+
plot_annotation(title = "HNSC",
tag_levels = "A")
ggsave(paste0(proj,"_heat_ve_pca.png"),width = 15,height = 10)